Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(3): 671-686.e17, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626769

RESUMEN

The molecular events that direct nuclear pore complex (NPC) assembly toward nuclear envelopes have been conceptualized in two pathways that occur during mitosis or interphase, respectively. In gametes and embryonic cells, NPCs also occur within stacked cytoplasmic membrane sheets, termed annulate lamellae (AL), which serve as NPC storage for early development. The mechanism of NPC biogenesis at cytoplasmic membranes remains unknown. Here, we show that during Drosophila oogenesis, Nucleoporins condense into different precursor granules that interact and progress into NPCs. Nup358 is a key player that condenses into NPC assembly platforms while its mRNA localizes to their surface in a translation-dependent manner. In concert, Microtubule-dependent transport, the small GTPase Ran and nuclear transport receptors regulate NPC biogenesis in oocytes. We delineate a non-canonical NPC assembly mechanism that relies on Nucleoporin condensates and occurs away from the nucleus under conditions of cell cycle arrest.


Asunto(s)
Proteínas de Drosophila/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Oogénesis , Transporte Activo de Núcleo Celular , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
2.
Mol Cell ; 81(1): 153-165.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333016

RESUMEN

Cellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an ∼50 MDa assembly comprised of ∼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics. We discovered that, although all Nups display uniformly slow turnover, their exchange rates vary considerably. Surprisingly, this exchange rate was relatively unrelated to each Nup's position, accessibility, or role in transport but correlated with its structural role; scaffold-forming Nups exchange slowly, whereas flexible connector Nups threading throughout the NPC architecture exchange more rapidly. Targeted perturbations in the NPC structure revealed a dynamic resilience to damage. Our approach opens a new window into macromolecular assembly dynamics.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
3.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33838103

RESUMEN

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Asunto(s)
Proteínas de Complejo Poro Nuclear/genética , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular , Citoplasma/genética , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/clasificación , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 77(1): 67-81.e7, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784359

RESUMEN

Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.


Asunto(s)
Cromatina/metabolismo , Poro Nuclear/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Acuaporinas/metabolismo , Sitios de Unión/fisiología , Línea Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Genoma/fisiología , Masculino , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
5.
EMBO J ; 42(13): e112987, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37254647

RESUMEN

Nucleoporins (Nups) assemble nuclear pores that form the permeability barrier between nucleoplasm and cytoplasm. Nucleoporins also localize in cytoplasmic foci proposed to function as pore pre-assembly intermediates. Here, we characterize the composition and incidence of cytoplasmic Nup foci in an intact animal, C. elegans. We find that, in young non-stressed animals, Nup foci only appear in developing sperm, oocytes and embryos, tissues that express high levels of nucleoporins. The foci are condensates of highly cohesive FG repeat-containing nucleoporins (FG-Nups), which are maintained near their solubility limit in the cytoplasm by posttranslational modifications and chaperone activity. Only a minor fraction of FG-Nup molecules concentrate in Nup foci, which dissolve during M phase and are dispensable for nuclear pore assembly. Nucleoporin condensation is enhanced by stress and advancing age, and overexpression of a single FG-Nup in post-mitotic neurons is sufficient to induce ectopic condensation and organismal paralysis. We speculate that Nup foci are non-essential and potentially toxic condensates whose assembly is actively suppressed in healthy cells.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Masculino , Animales , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Semen/metabolismo , Núcleo Celular/metabolismo , Transporte Activo de Núcleo Celular
6.
Genes Dev ; 32(19-20): 1321-1331, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30228202

RESUMEN

The total number of nuclear pore complexes (NPCs) per nucleus varies greatly between different cell types and is known to change during cell differentiation and cell transformation. However, the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope remain unclear. Here, we report that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types. This negative regulation of Tpr occurs via a phosphorylation cascade of extracellular signal-regulated kinase (ERK), the central kinase of the mitogen-activated protein kinase (MAPK) pathway. Tpr serves as a scaffold for ERK to phosphorylate the nucleoporin (Nup) Nup153, which is critical for early stages of NPC biogenesis. Our results reveal a critical role of the Nup Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus.


Asunto(s)
Proteínas de Complejo Poro Nuclear/fisiología , Poro Nuclear/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Interfase , Ratones , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
7.
Trends Biochem Sci ; 46(7): 595-607, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33563541

RESUMEN

The nuclear pore complex (NPC) is the massive protein assembly that regulates the transport of macromolecules between the nucleus and the cytoplasm. Recent breakthroughs have provided major insights into the structure of the NPC in different eukaryotes, revealing a previously unsuspected diversity of NPC architectures. In parallel, the NPC has been shown to be a key player in regulating essential nuclear processes such as chromatin organization, gene expression, and DNA repair. However, our knowledge of the NPC structure has not been able to address the molecular mechanisms underlying its regulatory roles. We discuss potential explanations, including the coexistence of alternative NPC architectures with specific functional roles.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Núcleo Celular , Citoplasma
8.
J Cell Sci ; 136(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37305998

RESUMEN

Besides assembling nuclear pore complexes, the conduits of nuclear transport, many nucleoporins also contribute to chromatin organization and gene expression, with critical roles in development and pathologies. We previously reported that Nup133 and Seh1, two components of the Y-complex subassembly of the nuclear pore scaffold, are dispensable for mouse embryonic stem cell viability but required for their survival during neuroectodermal differentiation. Here, a transcriptomic analysis revealed that Nup133 regulates a subset of genes at early stages of neuroectodermal differentiation, including Lhx1 and Nup210l, which encodes a newly validated nucleoporin. These genes are also misregulated in Nup133ΔMid neuronal progenitors, in which nuclear pore basket assembly is impaired. However, a four-fold reduction of Nup133 levels, despite also affecting basket assembly, is not sufficient to alter Nup210l and Lhx1 expression. Finally, these two genes are also misregulated in Seh1-deficient neural progenitors, which only show a mild reduction in nuclear pore density. Together these data reveal a shared function of Y-complex nucleoporins in gene regulation during neuroectodermal differentiation, apparently independent of nuclear pore basket integrity.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Animales , Ratones , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/genética , Regulación de la Expresión Génica , Perfilación de la Expresión Génica , Células Madre Embrionarias de Ratones
9.
EMBO Rep ; 24(9): e56766, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37469276

RESUMEN

During mitotic entry of vertebrate cells, nuclear pore complexes (NPCs) are rapidly disintegrated. NPC disassembly is initiated by hyperphosphorylation of linker nucleoporins (Nups), which leads to the dissociation of FG repeat Nups and relaxation of the nuclear permeability barrier. However, less is known about disintegration of the huge nuclear and cytoplasmic rings, which are formed by annular assemblies of Y-complexes that are dissociated from NPCs as intact units. Surprisingly, we observe that Y-complex Nups display slower dissociation kinetics compared with other Nups during in vitro NPC disassembly, indicating a mechanistic difference in the disintegration of Y-based rings. Intriguingly, biochemical experiments reveal that a fraction of Y-complexes remains associated with mitotic ER membranes, supporting recent microscopic observations. Visualization of mitotic Y-complexes by super-resolution microscopy demonstrates that they form two classes of higher order assemblies: large clusters at kinetochores and small, focal ER-associated assemblies. These, however, lack features qualifying them as persisting ring-shaped subassemblies previously proposed to serve as structural templates for NPC reassembly during mitotic exit, which helps to refine current models of nuclear reassembly.


Asunto(s)
Microscopía , Mitosis , Poro Nuclear , Núcleo Celular , Proteínas de Complejo Poro Nuclear/genética
10.
Mol Cell ; 66(1): 63-76.e6, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366641

RESUMEN

Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Transcripción Genética , Activación Transcripcional , Animales , Animales Modificados Genéticamente , Sitios de Unión , Línea Celular , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Ecdisona/farmacología , Genotipo , Elementos Aisladores , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fenotipo , Unión Proteica , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Transfección
11.
Trends Biochem Sci ; 45(4): 278-280, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32169173

RESUMEN

Oocytes stockpile nuclear pore complexes (NPCs) in cytoplasmic membrane sheets called annulate lamellae (AL) in preparation for rapid cell cycles during embryogenesis. Recently, Hampoelz et al. reported that AL-NPC assembly depends on the coordinated formation, transport, and interaction of biomolecular condensates containing distinct sets of nucleoporins.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Membrana Nuclear , Oocitos , Oogénesis
12.
Plant Biotechnol J ; 22(5): 1299-1311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38124291

RESUMEN

Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (Oryza glaberrima), however, introgression into Oryza sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single and double knockout mutants showed neither substantial growth defects nor symptoms indicative lesion mimic phenotypes, possibly reflecting functional differentiation. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.


Asunto(s)
Arabidopsis , Oryza , Virus de Plantas , Oryza/genética , Proteínas de Complejo Poro Nuclear/genética , Arabidopsis/genética , Edición Génica
13.
BMC Pediatr ; 24(1): 547, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182032

RESUMEN

OBJECTIVE: Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients. METHODS: We screened a large cohort of 885 pediatric cases from the COG-National Cancer Institute (NCI) TARGET AML cohort and found 57 AML patients with NUP98 rearrangements. RESULTS: The frequency of NUP98 gene fusion was 10.8% in 529 patients. NUP98::NSD1 fusion was the most common NUP98 rearrangement, with a frequency of 59.6%(34 of 57). NUP98::NSD1 -positive patients who carried FLT3/ITD mutations had a decreased CR1 or CR2 rate than those patients carried FLT3/ITD mutation alone (P = 0.0001). Moreover, patients harboring both NUP98::NSD1 fusion and FLT3/ITD mutation exhibited inferior event-free survival (EFS, P < 0.001) and overall survival (OS, P = 0.004) than patients who were dual negative for these two genetic lesions. The presence of only NUP98::NSD1 fusion had no significant impact on EFS or OS. We also found that cases with high FLT3/ITD AR levels ( > = 0.5) with or without NUP98::NSD1 had inferior prognosis. Multivariate analysis demonstrated that the presence of both NUP98::NSD1 and FLT3/ITD was an independent prognostic factors for EFS (hazard ratio: 3.2, P = 0.001) in patients with pediatric AML. However, there was no obvious correlation with OS (hazard ratio: 1.3, P = 0.618). Stem cell transplantation did not improve the survival rate of cases with NUP98 fusion or NUP98::NSD1 AML in terms of EFS or OS. CONCLUSION: Presence of both NUP98::NSD1 and FLT3/ITD was found to be an independent factor for dismal prognosis in pediatric AML patients. Notably, lack of FLT3/ITD mutations in NUP98::NSD1 -positive patients did not retain its prognostic value.


Asunto(s)
Leucemia Mieloide Aguda , Mutación , Proteínas de Complejo Poro Nuclear , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Niño , Femenino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Masculino , Pronóstico , Preescolar , Proteínas de Complejo Poro Nuclear/genética , Adolescente , Lactante , Proteínas de Fusión Oncogénica/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Nucleares/genética , Péptidos y Proteínas de Señalización Intracelular/genética
14.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884720

RESUMEN

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Metilación de ADN/genética , Cardiopatías Congénitas/genética , Histonas/metabolismo , Histonas/genética , Procesamiento Proteico-Postraduccional , Ratones , Cardiopatías/genética , Cardiopatías/metabolismo , Mutación
15.
Genes Dev ; 30(20): 2253-2258, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807035

RESUMEN

The organization of the genome in the three-dimensional space of the nucleus is coupled with cell type-specific gene expression. However, how nuclear architecture influences transcription that governs cell identity remains unknown. Here, we show that nuclear pore complex (NPC) components Nup93 and Nup153 bind superenhancers (SE), regulatory structures that drive the expression of key genes that specify cell identity. We found that nucleoporin-associated SEs localize preferentially to the nuclear periphery, and absence of Nup153 and Nup93 results in dramatic transcriptional changes of SE-associated genes. Our results reveal a crucial role of NPC components in the regulation of cell type-specifying genes and highlight nuclear architecture as a regulatory layer of genome functions in cell fate.


Asunto(s)
Diferenciación Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/fisiología , Genoma/genética , Humanos , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Unión Proteica , Transporte de Proteínas
16.
Am J Hum Genet ; 106(5): 623-631, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32275884

RESUMEN

Nucleoporins (NUPs) are an essential component of the nuclear-pore complex, which regulates nucleocytoplasmic transport of macromolecules. Pathogenic variants in NUP genes have been linked to several inherited human diseases, including a number with progressive neurological degeneration. We present six affected individuals with bi-allelic truncating variants in NUP188 and strikingly similar phenotypes and clinical courses, representing a recognizable genetic syndrome; the individuals are from four unrelated families. Key clinical features include congenital cataracts, hypotonia, prenatal-onset ventriculomegaly, white-matter abnormalities, hypoplastic corpus callosum, congenital heart defects, and central hypoventilation. Characteristic dysmorphic features include small palpebral fissures, a wide nasal bridge and nose, micrognathia, and digital anomalies. All affected individuals died as a result of respiratory failure, and five of them died within the first year of life. Nuclear import of proteins was decreased in affected individuals' fibroblasts, supporting a possible disease mechanism. CRISPR-mediated knockout of NUP188 in Drosophila revealed motor deficits and seizure susceptibility, partially recapitulating the neurological phenotype seen in affected individuals. Removal of NUP188 also resulted in aberrant dendrite tiling, suggesting a potential role of NUP188 in dendritic development. Two of the NUP188 pathogenic variants are enriched in the Ashkenazi Jewish population in gnomAD, a finding we confirmed with a separate targeted population screen of an international sampling of 3,225 healthy Ashkenazi Jewish individuals. Taken together, our results implicate bi-allelic loss-of-function NUP188 variants in a recessive syndrome characterized by a distinct neurologic, ophthalmologic, and facial phenotype.


Asunto(s)
Alelos , Encéfalo/anomalías , Proteínas de Drosophila/genética , Anomalías del Ojo/genética , Cardiopatías Congénitas/genética , Mutación con Pérdida de Función/genética , Proteínas de Complejo Poro Nuclear/genética , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Preescolar , Dendritas/metabolismo , Dendritas/patología , Drosophila melanogaster , Anomalías del Ojo/mortalidad , Femenino , Fibroblastos , Genes Recesivos , Cardiopatías Congénitas/mortalidad , Humanos , Lactante , Recién Nacido , Judíos/genética , Masculino , Proteínas de Complejo Poro Nuclear/deficiencia , Convulsiones/metabolismo , Síndrome , beta Carioferinas/metabolismo
17.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34037234

RESUMEN

Many cellular processes, ranging from cell division to differentiation, are controlled by nuclear pore complexes (NPCs). However, studying the contributions of individual NPC subunits to these processes in vertebrates has long been impeded by their complexity and the lack of efficient genetic tools. Here, we use genome editing in mouse embryonic stem cells (mESCs) to characterize the role of NPC structural components, focusing on the short arm of the Y-complex that comprises Nup85, Seh1 and Nup43. We show that Seh1 and Nup43, although dispensable in pluripotent mESCs, are required for their normal cell growth rates, their viability upon differentiation and for the maintenance of proper NPC density. mESCs with an N-terminally truncated Nup85 mutation (in which interaction with Seh1 is greatly impaired) feature a similar reduction of NPC density. However, their proliferation and differentiation are unaltered, indicating that it is the integrity of the Y-complex, rather than the number of NPCs, that is critical to ensure these processes.


Asunto(s)
Células Madre Embrionarias de Ratones , Poro Nuclear , Animales , Diferenciación Celular/genética , Edición Génica , Ratones , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética
18.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33912945

RESUMEN

Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the ß-karyopherin (Kapß) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapßs, cargoes and Ran to establish the asymmetry of NCT.


Asunto(s)
Carioferinas , Proteína de Unión al GTP ran , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
19.
Planta ; 259(2): 34, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38160450

RESUMEN

MAIN CONCLUSION: Physiological and molecular tests show that NUP96 plays an important role in the plant response to salt stress, resulting from the reprogramming of transcriptomic profiles, which are likely to be mediated by the influence on the nuclear/cytosol shuttling of the key regulators of salt tolerance. As a key component of the nuclear pore complex (NPC), nucleoporin 96 (NUP96) is critical for modulating plant development and interactions with environmental factors, but whether NUP96 is involved in the salt response is still unknown. Here, we analyzed the role of Arabidopsis NUP96 under salt stress. The loss-of-function mutant nup96 exhibited salt sensitivity in terms of rosette growth and root elongation, and showed attenuated capacity in maintaining ion and ROS homeostasis, which could be compensated for by the overexpression of NUP96. RNA sequencing revealed that many salt-responsive genes were misregulated after NUP96 mutation, and especially NUP96 is required for the expression of a large portion of salt-induced genes. This is likely correlated with the activity in facilitating nuclear/cytosol transport of the underlying regulators in salt tolerance such as the transcription factor ATAP2, targeted by eight downregulated genes in nup96 under salt stress. Our results illustrate that NUP96 plays an important role in the salt response, probably by regulating the nucleocytoplasmic shuttling of key mRNAs or proteins associated with plant salt responsiveness.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética
20.
Plant Cell Rep ; 42(3): 549-559, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36598573

RESUMEN

KEY MESSAGE: Arabidopsis nucleoporin involved in the regulation of ethylene signaling via controlling of nucleocytoplasmic transport of mRNAs. The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that the nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate in ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Arabidopsis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA