Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Sci ; 134(6)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33589493

RESUMEN

Nup214 is a major nucleoporin on the cytoplasmic side of the nuclear pore complex with roles in late steps of nuclear protein and mRNA export. It interacts with the nuclear export receptor CRM1 (also known as XPO1) via characteristic phenylalanine-glycine (FG) repeats in its C-terminal region. Here, we identify a classic nuclear export sequence (NES) in Nup214 that mediates Ran-dependent binding to CRM1. Nup214 versions with mutations in the NES, as well as wild-type Nup214 in the presence of the selective CRM1 inhibitor leptomycin B, accumulate in the nucleus of Nup214-overexpressing cells. Furthermore, physiological binding partners of Nup214, such as Nup62 and Nup88, are recruited to the nucleus together with Nup214. Nuclear export of mutant Nup214 can be rescued by artificial nuclear export sequences at the C-terminal end of Nup214, leading also to a correct localization of Nup88. Our results suggest a function of the Nup214 NES in the biogenesis of the nuclear pore complex and/or in terminal steps of CRM1-dependent protein export.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica
2.
Am J Hum Genet ; 105(1): 48-64, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31178128

RESUMEN

We report biallelic missense and frameshift pathogenic variants in the gene encoding human nucleoporin NUP214 causing acute febrile encephalopathy. Clinical symptoms include neurodevelopmental regression, seizures, myoclonic jerks, progressive microcephaly, and cerebellar atrophy. NUP214 and NUP88 protein levels were reduced in primary skin fibroblasts derived from affected individuals, while the total number and density of nuclear pore complexes remained normal. Nuclear transport assays exhibited defects in the classical protein import and mRNA export pathways in affected cells. Direct surface imaging of fibroblast nuclei by scanning electron microscopy revealed a large increase in the presence of central particles (known as "plugs") in the nuclear pore channels of affected cells. This observation suggests that large transport cargoes may be delayed in passage through the nuclear pore channel, affecting its selective barrier function. Exposure of fibroblasts from affected individuals to heat shock resulted in a marked delay in their stress response, followed by a surge in apoptotic cell death. This suggests a mechanistic link between decreased cell survival in cell culture and severe fever-induced brain damage in affected individuals. Our study provides evidence by direct imaging at the single nuclear pore level of functional changes linked to a human disease.


Asunto(s)
Encefalopatía Aguda Febril/etiología , Fibroblastos/patología , Mutación del Sistema de Lectura , Canales Iónicos/fisiología , Mutación Missense , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/patología , Transporte Activo de Núcleo Celular , Encefalopatía Aguda Febril/metabolismo , Encefalopatía Aguda Febril/patología , Apoptosis , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Masculino , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Linaje , Conformación Proteica
3.
Histochem Cell Biol ; 156(5): 409-421, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34331103

RESUMEN

Elevated expression of the nucleoporin Nup88, a constituent of the nuclear pore complex, is seen in various types of malignant tumors, but whether this overexpression contributes to the malignant phenotype has yet to be determined. Here, we investigated the effect of the overexpression of Nup88 on the migration and invasion of cervical cancer HeLa cells. The overexpression of Nup88 promoted a slight but significant increase in both migration and invasion, whereas knockdown of Nup88 by RNA interference suppressed these phenotypes. The observed phenotypes in Nup88-overexpressing HeLa cells were not due to the progression of the epithelial-to-mesenchymal transition or activation of NF-κB, which are known to be important for cell migration and invasion. Instead, we identified an upregulation of matrix metalloproteinase-12 (MMP-12) at both the gene and protein levels in Nup88-overexpressing HeLa cells. Upregulation of MMP-12 protein by the overexpression of Nup88 was also observed in one other cervical cancer cell line and two prostate cancer cell lines but not 293 cells. Treatment with a selective inhibitor against MMP-12 enzymatic activity significantly suppressed the invasive ability of HeLa cells induced by Nup88 overexpression. Taken together, our results suggest that overexpression of Nup88 can stimulate malignant phenotypes including invasive ability, which is promoted by MMP-12 expression.


Asunto(s)
Proteínas de Complejo Poro Nuclear/genética , Movimiento Celular , Células Cultivadas , Células HeLa , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo
4.
J Biol Chem ; 294(31): 11741-11750, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31186352

RESUMEN

The Notch receptor is a key mediator of developmental programs and cell-fate decisions. Imbalanced Notch signaling leads to developmental disorders and cancer. To fully characterize the Notch signaling pathway and exploit it in novel therapeutic interventions, a comprehensive view on the regulation and requirements of Notch signaling is needed. Notch is regulated at different levels, ranging from ligand binding, stability to endocytosis. Using an array of different techniques, including reporter gene assays, immunocytochemistry, and ChIP-qPCR we show here, to the best of our knowledge for the first time, regulation of Notch signaling at the level of the nuclear pore. We found that the nuclear pore protein Nup214 (nucleoporin 214) and its interaction partner Nup88 negatively regulate Notch signaling in vitro and in vivo in zebrafish. In mammalian cells, loss of Nup88/214 inhibited nuclear export of recombination signal-binding protein for immunoglobulin κJ region (RBP-J), the DNA-binding component of the Notch pathway. This inhibition increased binding of RBP-J to its cognate promoter regions, resulting in increased downstream Notch signaling. Interestingly, we also found that NUP214 fusion proteins, causative for certain cases of T-cell acute lymphatic leukemia, potentially contribute to tumorigenesis via a Notch-dependent mechanism. In summary, the nuclear pore components Nup88/214 suppress Notch signaling in vitro, and in zebrafish, nuclear RBP-J levels are rate-limiting factors for Notch signaling in mammalian cells, and regulation of nucleocytoplasmic transport of RBP-J may contribute to fine-tuning Notch activity in cells.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteínas de Complejo Poro Nuclear/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Notch/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción HES-1/antagonistas & inhibidores , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
BMC Cancer ; 18(1): 519, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724197

RESUMEN

BACKGROUND: Nucleoporin Nup88, a component of nuclear pore complexes, is known to be overexpressed in several types of tumor tissue. The overexpression of Nup88 has been reported to promote the early step of tumorigenesis by inducing multinuclei in both HeLa cells and a mouse model. However, the molecular basis of how Nup88 leads to a multinucleated phenotype remains unclear because of a lack of information concerning its binding partners. In this study, we characterize a novel interaction between Nup88 and vimentin. We also examine the involvement of vimentin in the Nup88-dependent multinucleated phenotype. METHODS: Cells overexpressing tagged versions of Nup88, vimentin and their truncations were used in this study. Coprecipitation and GST-pulldown assays were carried out to analyze protein-protein interactions. Vimentin knockdown by siRNA was performed to examine the functional role of the Nup88-vimentin interaction in cells. The phosphorylation status of vimentin was analyzed by immunoblotting using an antibody specific for its phosphorylation site. RESULTS: Vimentin was identified as a Nup88 interacting partner, although it did not bind to other nucleoporins, such as Nup50, Nup214, and Nup358, in HeLa cell lysates. The N-terminal 541 amino acid residues of Nup88 was found to be responsible for its interaction with vimentin. Recombinant GST-tagged Nup88 bound to recombinant vimentin in a GST-pulldown assay. Although overexpression of Nup88 in HeLa cells was observed mainly at the nuclear rim and in the cytoplasm, colocalization with vimentin was only partially detected at or around the nuclear rim. Disruption of the Nup88-vimentin interaction by vimentin specific siRNA transfection suppressed the Nup88-dependent multinucleated phenotype. An excess amount of Nup88 in cell lysates inhibited the dephosphorylation of a serine residue (Ser83) within the vimentin N-terminal region even in the absence and presence of an exogenous phosphatase. The N-terminal 96 amino acid residues of vimentin interacted with both full-length and the N-terminal 541 residues of Nup88. CONCLUSIONS: Nup88 can affect the phosphorylation status of vimentin, which may contribute to the Nup88-dependent multinucleated phenotype through changing the organization of vimentin.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Núcleo Celular/patología , Transformación Celular Neoplásica/patología , Proteínas de Complejo Poro Nuclear/metabolismo , Vimentina/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Fosforilación , ARN Interferente Pequeño/metabolismo , Vimentina/genética
6.
Biochim Biophys Acta ; 1833(12): 2682-2689, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23777819

RESUMEN

The nuclear pore complex (NPC) is a macromolecular assembly consisting of approximately 30 different proteins called nucleoporins. Several nucleoporins are O-GlcNAcylated, which is a post-translational modification in which the monosaccharide ß-N-acetylglucosamine (GlcNAc) is attached to serine or threonine residues within proteins. However, the biological significance of this modification on nucleoporins remains obscure. Here we found that Nup62 and Nup88 protein levels were significantly decreased upon knockdown of O-GlcNAc transferase (OGT), which catalyzes the O-GlcNAcylation of intracellular proteins. Although Nup88, unlike Nup62, was not recognized by an anti-O-GlcNAc antibody or WGA-HRP, knockdown of Nup62 caused a reduction in Nup88 protein levels, suggesting that the observed decrease in Nup88 in OGT knocked-down cells is due to a decrease in Nup62. Furthermore, we found that Nup88 was preferentially associated with O-GlcNAcylated Nup62 compared with non-O-GlcNAcylated Nup62. These results indicate that Nup62 protein levels are primarily maintained by O-GlcNAcylation and that Nup88 is quantitatively regulated through its interaction with O-GlcNAcylated Nup62.


Asunto(s)
Acetilglucosamina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Glicosilación , Células HeLa , Humanos , N-Acetilglucosaminiltransferasas , Unión Proteica , ARN Interferente Pequeño/metabolismo
7.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071440

RESUMEN

Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.

8.
Front Oncol ; 13: 1095046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845732

RESUMEN

Bidirectional nucleo-cytoplasmic transport, regulating several vital cellular processes, is mediated by the Nuclear Pore Complex (NPC) comprising the nucleoporin (Nup) proteins. Nup88, a constituent nucleoporin, is overexpressed in many cancers, and a positive correlation exists between progressive stages of cancer and Nup88 levels. While a significant link of Nup88 overexpression in head and neck cancer exists but mechanistic details of Nup88 roles in tumorigenesis are sparse. Here, we report that Nup88 and Nup62 levels are significantly elevated in head and neck cancer patient samples and cell lines. We demonstrate that the elevated levels of Nup88 or Nup62 impart proliferation and migration advantages to cells. Interestingly, Nup88-Nup62 engage in a strong interaction independent of Nup-glycosylation status and cell-cycle stages. We report that the interaction with Nup62 stabilizes Nup88 by inhibiting the proteasome-mediated degradation of overexpressed Nup88. Overexpressed Nup88 stabilized by interaction with Nup62 can interact with NF-κB (p65) and sequesters p65 partly into nucleus of unstimulated cells. NF-κB targets like Akt, c-myc, IL-6 and BIRC3 promoting proliferation and growth are induced under Nup88 overexpression conditions. In conclusion, our data indicates that simultaneous overexpression of Nup62 and Nup88 in head and neck cancer stabilizes Nup88. Stabilized Nup88 interacts and activates p65 pathway, which perhaps is the underlying mechanism in Nup88 overexpressing tumors.

9.
Plant Signal Behav ; 12(5): e1313378, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28387602

RESUMEN

Arabidopsis nucleoporin MOS7/NUP88 was identified in a forward-genetic screen for components that contribute to auto-immunity of the deregulated Resistance (R) gene mutant snc1, and is required for immunity to biotrophic and hemi-biotrophic pathogens. In a recent study, we showed that MOS7 is also essential to mount a full defense response against the necrotrophic fungal pathogen Botrytis cinerea, suggesting that MOS7 modulates plant defense responses to different types of pathogenic microbes. Here, we extend our analyses of MOS7-dependent plant immune responses and report the genetic requirement of MOS7 for manifestation of phenotypes associated with the CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) mutant cerk1-4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Botrytis/patogenicidad , Inmunidad de la Planta , Plantas Modificadas Genéticamente/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Pathol Res Pract ; 212(4): 274-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26839161

RESUMEN

BACKGROUND: Nup88 is overexpressed in a number of types of carcinomas and is associated with myometrial invasion, but its exact expression pattern in endometrial cancer and premalignant lesions is unknown. AIMS: To evaluate the role of Nup88 in endometrial cancers and atypical endometrial hyperplasia and its clinicopathological significance. METHODS: Nup88 expression was examined by immunohistochemistry in samples from 104 endometrial cancers, 21 atypical endometrial hyperplasia lesions, and 40 normal endometria. All samples were from patients who underwent surgery at the First Hospital of Hebei Medical University (Shijiazhuang, China) between April 2006 and December 2009. Nup88 expression was compared between the groups and associations were assessed between Nup88 and clinicopathological characteristics of the subjects. RESULTS: Nup88 expression in cancer (76% of samples) and atypical hyperplasia (91%) was significantly higher compared to normal endometrium (33%, both P<0.001), but there was no significant difference between endometrial cancer and atypical hyperplasia (P=0.237). The expression of Nup88 increased significantly with increasing exposure time to estrogen (P=0.033). CONCLUSIONS: Nup88 may be related to the occurrence of endometrial cancers and premalignant lesions. Nup88 might be a useful biomarker for pre-malignant lesions and early-stage endometrial cancer.


Asunto(s)
Biomarcadores de Tumor/análisis , Hiperplasia Endometrial/patología , Neoplasias Endometriales/patología , Proteínas de Complejo Poro Nuclear/biosíntesis , Lesiones Precancerosas/patología , Adulto , Anciano , Hiperplasia Endometrial/metabolismo , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Proteínas de Complejo Poro Nuclear/análisis , Lesiones Precancerosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA