Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(29): e2310461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396201

RESUMEN

Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.


Asunto(s)
Liberación de Fármacos , Queratitis , Agujas , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratas , Sirolimus/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/uso terapéutico , Ratas Sprague-Dawley , Córnea/metabolismo , Córnea/efectos de los fármacos , Plata/química , Sistemas de Liberación de Medicamentos
2.
Mol Pharm ; 21(7): 3204-3217, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809137

RESUMEN

The transcorneal route is the main entry route for drugs to the intraocular parts, after topical administration. The outer surface, the corneal epithelium (CE), forms the rate-limiting barrier for drug permeability. Information about the role and protein expression of drug and amino acid transporter proteins in the CE is sparse and lacking. The aim of our study was to characterize transporter protein expression in rabbit and porcine CE to better understand potential drug and nutrient absorption after topical administration. Proteins, mainly Abc and Slc transporters, were characterized with quantitative targeted absolute proteomics and global untargeted proteomics methods. In the rabbit CE, 24 of 48 proteins were detected in the targeted approach, and 21 of these were quantified. In the porcine CE, 26 of 58 proteins were detected in the targeted approach, and 20 of these were quantified. Among these, 15 proteins were quantified in both animals: 4f2hc (Slc3a2), Aqp0, Asct1 (Slc1a4), Asct2 (Slc1a5), Glut1 (Slc2a1), Hmit (Slc2a13), Insr, Lat1 (Slc7a5), Mct1 (Slc16a1), Mct2 (Slc16a7), Mct4 (Slc16a3), Mrp 4 (Abcc4), Na+/K+-ATPase, Oatp3a1 (Slco3a1), and Snat2 (Slc38a2). Overall, the global proteomics results supported the targeted proteomics results. Organic anion transporting polypeptide Oatp3a1 was detected and quantified for the first time in both rabbit (1.4 ± 0.4 fmol/cm2) and porcine (11.1 ± 5.3 fmol/cm2) CE. High expression levels were observed for L-type amino acid transporter, Lat1, which was quantified with newly selected extracellular domain peptides in rabbit (48.9 ± 11.8 fmol/cm2) and porcine (37.6 ± 11.5 fmol/cm2) CE. The knowledge of transporter protein expression in ocular barriers is a key factor in the successful design of new ocular drugs, pharmacokinetic modeling, understanding ocular diseases, and the translation to human.


Asunto(s)
Epitelio Corneal , Proteómica , Animales , Conejos , Porcinos , Epitelio Corneal/metabolismo , Proteómica/métodos , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Administración Oftálmica
3.
Mol Pharm ; 21(1): 126-136, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110329

RESUMEN

This study investigates the interaction of two approved and one newly developed latanoprost formulation with in vitro and in silico models of the tear film and tear film lipid layer (TFLL). Latanoprost, a prostaglandin analogue used for intraocular elevated pressure treatment, is topically delivered by nanocarriers within aqueous solutions or emulsions. The study focuses on the impact of these carriers on drug interactions with the tear film and their effect on the TFLL. Three different types of latanoprost carriers, micellar, nanoemulsion, and polymer-based, were compared, and each revealed distinct interaction patterns with the TFLL. Surface pressure kinetics demonstrated a rapid increase for the benzalkonium chloride formulation and a slow rise for the preservative-free variants. Visualization of the acellular in vitro TFLL model revealed different patterns of incorporation for each formulation, indicating unique interaction mechanisms. Molecular dynamics simulations further revealed different mechanisms of drug release in the TFLL between micellar and nanoemulsion formulations. In-depth examination highlighted the role of triglyceride molecules in replenishing the nonpolar layer of the TFLL, which suggests potential improvements in ocular surface compatibility by adjusting the quality and concentration of the oily phase. These findings suggest the potential for optimizing latanoprost formulations by tuning the oily phase-to-surfactant ratio and selecting suitable surfactants.


Asunto(s)
Ojo , Glaucoma , Humanos , Latanoprost/uso terapéutico , Presión Intraocular , Glaucoma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Antihipertensivos/uso terapéutico
4.
Graefes Arch Clin Exp Ophthalmol ; 262(2): 545-556, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37776338

RESUMEN

PURPOSE: This study aimed to report on glaucoma patients' beliefs and illness perceptions and to investigate their opinion on ocular drug delivery devices (ODD). METHODS: We performed a cross-sectional study in a large tertiary-referral outpatient glaucoma clinic, with 102 patients. Validated anonymized questionnaires were used. We investigated the awareness and acceptance regarding ODD (contact lenses (CLs), punctal plugs (PPs), subconjunctival implants, anterior chamber (AC) injections, and drug-emitting stents) and looked at factors that could influence a patient's decision for having an ODD. RESULTS: Sixty-three patients (61.8%) confirmed they would rather have ODD than keep their eye-drops (38.2%). The most important factors influencing their decision were effectiveness and long-lasting effect. A large proportion of patients reported a preference for CLs (48.0%), PPs (52.9%), or drug-emitting stents (44.1%). When comparing patients who preferred ODD (group-1) versus eye-drops (group-2), significantly more patients in group-1 were worried (p < 0.001) or felt disrupted (p < 0.001) by their use of eye-drops. A significantly greater share of patients in group-1 showed acceptance towards CLs (60.3% vs. 38.5%; p = 0.032), AC injections (38.1% vs. 12.8%, p = 0.006), or drug-emitting stents (54% vs. 28.2%, p = 0.023), whilst there were no significant differences regarding the acceptance of PPs (p = 0.363) or subconjunctival implants (p = 0.058). CONCLUSION: ODD for the treatment of glaucoma were broadly deemed acceptable by patients in this study. Effectiveness and long-lasting effect were the most important factors for a decision towards having an ODD. The majority of patients who preferred an ODD felt severely affected by their disease and were negatively influenced by their glaucoma medication intake.


Asunto(s)
Glaucoma , Presión Intraocular , Humanos , Estudios Transversales , Aceptación de la Atención de Salud , Glaucoma/tratamiento farmacológico , Glaucoma/cirugía , Sistemas de Liberación de Medicamentos , Encuestas y Cuestionarios , Soluciones Oftálmicas , Hospitales , Antihipertensivos/uso terapéutico
5.
Handb Exp Pharmacol ; 284: 267-288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37620616

RESUMEN

The eye has several dynamic and static barriers in place to limit the entry of foreign substances including therapeutics. As such, efficient drug delivery, especially to posterior segment tissues, has been challenging. This chapter describes the anatomical and physiological challenges associated with ocular drug delivery before discussing constraints with regard to formulation parameters. Finally, it gives an overview of advanced drug delivery technologies with a specific focus on recently marketed and late-stage clinical trial products.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ojo , Humanos
6.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612812

RESUMEN

Melatonin's cytoprotective properties may have therapeutic implications in treating ocular diseases like glaucoma and age-related macular degeneration. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. This study aims to summarize the screened articles on melatonin's clinical, pharmacological, and formulation evaluation in treating ocular disorders. The identification of relevant studies on the topic in focus was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. The studies were searched in the following databases and web search engines: Pubmed, Scopus, Science Direct, Web of Science, Reaxys, Google Scholar, Google Patents, Espacenet, and Patentscope. The search time interval was 2013-2023, with the following keywords: melatonin AND ocular OR ophthalmic AND formulation OR insert AND disease. Our key conclusion was that using melatonin-loaded nano-delivery systems enabled the improved permeation of the molecule into intraocular tissues and assured controlled release profiles. Although preclinical studies have demonstrated the efficacy of developed formulations, a considerable gap has been observed in the clinical translation of the results. To overcome this failure, revising the preclinical experimental phase might be useful by selecting endpoints close to clinical ones.


Asunto(s)
Oftalmopatías , Melatonina , Melatonina/uso terapéutico , Melatonina/farmacología , Humanos , Oftalmopatías/tratamiento farmacológico , Animales , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Composición de Medicamentos
7.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792122

RESUMEN

The eye's complex anatomical structures present formidable barriers to effective drug delivery across a range of ocular diseases, from anterior to posterior segment pathologies. Emerging as a promising solution to these challenges, nanotechnology-based platforms-including but not limited to liposomes, dendrimers, and micelles-have shown the potential to revolutionize ophthalmic therapeutics. These nanocarriers enhance drug bioavailability, increase residence time in targeted ocular tissues, and offer precise, localized delivery, minimizing systemic side effects. Focusing on pediatric ophthalmology, particularly on retinoblastoma, this review delves into the recent advancements in functionalized nanosystems for drug delivery. Covering the literature from 2017 to 2023, it comprehensively examines these nanocarriers' potential impact on transforming the treatment landscape for retinoblastoma. The review highlights the critical role of these platforms in overcoming the unique pediatric eye barriers, thus enhancing treatment efficacy. It underscores the necessity for ongoing research to realize the full clinical potential of these innovative drug delivery systems in pediatric ophthalmology.


Asunto(s)
Sistemas de Liberación de Medicamentos , Retinoblastoma , Retinoblastoma/tratamiento farmacológico , Humanos , Portadores de Fármacos/química , Niño , Nanopartículas/química , Micelas , Liposomas/química , Dendrímeros/química , Neoplasias de la Retina/tratamiento farmacológico , Administración Oftálmica , Nanotecnología/métodos
8.
J Nanobiotechnology ; 21(1): 232, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480102

RESUMEN

Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ojo , Nanotecnología
9.
J Microencapsul ; 40(6): 423-441, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37192318

RESUMEN

AIM: The aim of this manuscript was to fabricate agomelatine (AGM) loaded elastosomes to improve its corneal permeation and ocular bioavailability. AGM is a biopharmaceutical classification system (BCS) class II with low water solubility and high membrane permeability. It has a potent agonistic action on melatonin receptors, so it is used for glaucoma treatment. METHODS: Elastosomes were made using modified ethanol injection technique according to a 22 × 41 full factorial design. The chosen factors were: edge activators (EAs) type, surfactant percent (SAA %w/w), and cholesterol:surfactant ratio (CH:SAA ratio). The studied responses were encapsulation efficiency percent (EE%), mean diameter, polydispersity index (PDI), zeta potential (ZP), percentage of drug released after two hours (Q2h%), and 24 hours (Q24h%). RESULTS: The optimum formula with the desirability of 0.752 was composed of Brij98 as EA type, 15%w/w SAA%, and 1:1 CH:SAA ratio. It revealed EE% of 73.22%w/v and mean diameter, PDI, ZP, Q2h%, and Q24h% values of 484.25 nm, 0.31, -30.75 mV, 32.7%w/v, and 75.6%w/v, respectively. It demonstrated acceptable stability for three months and superior elasticity than its conventional liposome. The histopathological study ensured the tolerability of its ophthalmic application. Also, it was proven to be safe from the results of the pH and refractive index tests. The in vivo pharmacodynamic parameters of the optimum formula revealed dominance in a maximum % decrease in intraocular pressure (IOP), the area under the IOP response curve, and mean residence time with the value of 82.73%w/v, 820.69%h, and 13.98 h compared to that of the AGM solution (35.92%w/v, 181.30%h, and 7.52 h). CONCLUSIONS: Elastosomes can be a promising option to improve AGM ocular bioavailability.


Asunto(s)
Ácido Hialurónico , Presión Intraocular , Córnea , Acetamidas/farmacología
10.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895032

RESUMEN

Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.


Asunto(s)
Oftalmopatías , Humanos , Oftalmopatías/tratamiento farmacológico , Calidad de Vida , Ojo , Sistemas de Liberación de Medicamentos/métodos , Liposomas
11.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629157

RESUMEN

Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.


Asunto(s)
Ojo , Glaucoma , Humanos , Cara , Sistemas de Liberación de Medicamentos , Polímeros
12.
Small ; 18(4): e2104657, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35083856

RESUMEN

Fungal keratitis (FK) remains a serious clinical problem worldwide, so the ultimate goal of the treatment is to develop a minimally invasive, safe, and effective method for ocular drug delivery. Here, a minimally invasive delivery system is reported for treating FK by using a dissolving microneedle (MN)-array patch based on Poly(D,L-lactide) (PLA) and hyaluronic acid (HA). By altering the concentration of PLA, MN patches with excellent properties are modified and optimized. The 30% PLA-HA MN patches penetrate the corneal epithelial layer reversibly with no apparent ocular irritation as well as a short recovery time of less than 12 h, and increase the residence time by 2.5 h in the conjunctival sac, thereby offering higher drug bioavailability. Remarkably, the rabbit model of FK shows that the topical MN(+) patch medication exerts superior therapeutic effects compared with the conventional eye drop formulation, and also presents comparable therapeutic efficacy with that of the clinical mainstay strategy (i.e., intrastromal injection). Therefore, the MN patch, acting as an ocular drug delivery system with high efficacy and ability of rapid corneal healing, promises a cost-effective household solution for the treatment of FK, which may also lead to a new approach for treating FK in clinics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Infecciones Fúngicas del Ojo , Animales , Córnea , Sistemas de Liberación de Medicamentos/métodos , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Agujas , Soluciones Oftálmicas/farmacología , Soluciones Oftálmicas/uso terapéutico , Conejos
13.
J Heat Transfer ; 144(3): 031208, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833154

RESUMEN

The purpose of this study is to investigate the effect of partial liquefaction (due to ageing) of the vitreous humor on the transport of ocular drugs. In our model, the gel part of the vitreous is treated as a Darcy-type porous medium. A spherical region within the porous part of vitreous is in a liquid state which, for computational purposes, is also treated as a porous medium but with a much higher permeability. Using the finite element method, a time-dependent, three-dimensional model has been developed to computationally simulate (using the Petrov-Galerkin method) the transport of intravitreally injected macromolecules where both convection and diffusion are present. From a fluid physics and transport phenomena perspective, the results show many interesting features. For pressure-driven flow across the vitreous, the flow streamlines converge into the liquefied region as the flow seeks the fastest path of travel. Furthermore, as expected, with increased level of liquefaction, the overall flow rate increases for a given pressure drop. We have quantified this effect for various geometrical considerations. The flow convergence into the liquefied region has important implication for convective transport. One effect is the clear diversion of the drug as it reaches the liquefied region. In some instances, the entry point of the drug in the retinal region gets slightly shifted due to liquefaction. While the model has many approximations and assumptions, the focus is illustrating the effect of liquefaction as one of the building blocks toward a fully comprehensive model.

14.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209120

RESUMEN

(1) Background: Mangiferin (MGN) is a natural compound, showing anti-inflammatory and antioxidant activities for the potential treatment of eye diseases. The poor physicochemical features of MGN (low solubility and high instability) justify its nanoencapsulation into nanostructured lipid carriers (NLC) to improve its ocular bioavailability. (2) Methods: Firstly, MGN-NLC were prepared by the high shear homogenization coupled with the ultrasound (HSH-US) method. Finally, unloaded and MGN-loaded NLC were analyzed in terms of ocular tolerance. (3) Results: MGN-NLC showed good technological parameters suitable for ocular administration (particle size below 200 nm). The ORAC assay was performed to quantify the antioxidant activity of MGN, showing that the antioxidant activity of MGN-NLC (6494 ± 186 µM TE/g) was higher than that of the free compound (3521 ± 271 µM TE/g). This confirmed that the encapsulation of the drug was able to preserve and increase its activity. In ovo studies (HET-CAM) revealed that the formulation can be considered nonirritant. (4) Conclusions: Therefore, NLC systems are a promising approach for the ocular delivery of MGN.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanotecnología , Xantonas/administración & dosificación , Administración Oftálmica , Antioxidantes/administración & dosificación , Calorimetría , Ojo/efectos de los fármacos , Hemólisis/efectos de los fármacos , Lípidos/química , Estructura Molecular , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Solubilidad , Análisis Espectral
15.
Pharm Dev Technol ; 27(1): 25-39, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34895024

RESUMEN

Due to the rapid clearance of external agents from the surface of the cornea, conventional ocular formulations usually require frequent and long duration of administration to achieve a therapeutic level of the drug on the cornea which can be conquered using prolonged-release nanofibrous inserts. In the present study, for the first time, polymeric nanofibers of itraconazole (ITZ), a potent triazole antifungal agent, were prepared as ocular inserts to enhance the topical ocular delivery of the drug. Three different nanofibers were prepared by electrospinning using polyvinyl alcohol-cellulose acetate and polycaprolactone-polyethylene glycol 12 000 polymeric blends. Nanofibers indicated uniform structures with the mean diameter ranging between 137 and 180 nm. Differential scanning calorimetry and Fourier-transform infrared spectroscopy confirmed the amorphous state of the drug in the formulations and the no drug-polymer interaction. Appropriate stability, suitable flexibility, and 2.2-3.9 MPa tensile strength were observed. Formulations indicated antifungal efficacy against Candida albicans and Aspergillus fumigatus and cell viability >70% at different concentrations. Results of bioassay against Candida albicans exhibited prolonged in vitro release of 50-70% of ITZ for almost 55 days. The results suggested that the nanofibers could be considered suitable for prolonged delivery of the ITZ as an antifungal requiring frequent and long duration of administration.


Asunto(s)
Itraconazol , Nanofibras , Antifúngicos , Itraconazol/química , Itraconazol/farmacología , Nanofibras/química , Polímeros/química , Alcohol Polivinílico/química
16.
AAPS PharmSciTech ; 23(6): 192, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819539

RESUMEN

The purpose of this study was to develop a validated LC-MS/MS analytical method for the simultaneous analysis of a large cassette containing a wide range of drug substances with positive, negative, or neutral charge and further apply the method to assess octanol partition coefficient and eye tissue recovery of the drug cassette. A twenty-seven-drug cassette (N-in-one) including beta blockers, NSAIDs, and corticosteroids that range from extremely hydrophilic (sotalol) to very hydrophobic (triamcinolone hexacetanide) was used to develop an LC-MS/MS assay using QTrap 4500. An LC-MS/MS method based on gradient elution, with an eighteen-minute run time including equilibration time, was developed and validated for the rapid and simultaneous quantitation of drugs with a wide range of lipophilicities. Scheduled multiple reaction monitoring was used to maximize the scan time for each peak, ensuring sufficient scans. Method validation included lower limit of quantitation (LLOQ) and intra- and inter-day reproducibility. The LLOQ ranged from 0.5 (sotalol) to 40 fmols (dexamethasone) on column with a %RSD < 20%. The method was tested by measuring octanol:water and octanol:buffer (PBS, pH 7.4) partition coefficients and by quantitation of the drug cassette extracted from rabbit aqueous humor and cornea. Measured partition coefficients correlated positively with predicted values (r2=0.5-0.7). Drug recovery was ≥ 79% from aqueous humor and between 61 and 67% on average from cornea. A rapid, sensitive LC-MS/MS method suitable for N-in-one drug delivery screening was developed for simultaneous quantification of twenty-seven drugs in aqueous solutions and eye tissues.


Asunto(s)
Sotalol , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Octanoles , Preparaciones Farmacéuticas , Conejos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
17.
Exp Eye Res ; 213: 108824, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742693

RESUMEN

Corneal alkali burns are a major ophthalmic emergency, as current therapeutic treatments are limited. Novel treatment targets and new potential agents are required to combat this severe ocular injury. Glycyrrhizin and rebamipide (RBM) are both FDA-approved drugs with potential effects against corneal alkali burns, but RBM is limited by its low aqueous solubility and low bioavailability. This study aimed to utilize dipotassium glycyrrhizinate (DG, a dipotassium salt of glycyrrhizin) as a nanocarrier encapsulating RBM to formulate an ophthalmic solution (marked DG-RBM) with strengthened activities to treat corneal alkali burns. Results showed that an easy DG-RBM preparative process generated particles with high encapsulation efficacy and ultra-small micellar size. The solubility of RBM in DG-RBM in aqueous solution was 3.1 × 105-fold enhanced than its free solution. DG-RBM exhibited excellent storage stability. In vitro cytotoxicity, ex vivo conjunctival responses, and rabbit eye tolerance tests showed that DG-RBM possessed good ocular safety profiles. DG-RBM exhibited improved in vivo corneal permeation profiles and demonstrated a strong effect against H2O2-induced oxidative damage, with a significant effect on promoting epithelial wound healing in corneal cells in vitro. As expected, in a mouse model of corneal alkali burns, the topical administration of DG-RBM achieved a strengthened efficacy against alkali burn damages. The mechanism of this therapeutic effect involved regulating high-mobility group box 1 (HMGB1) signaling and its related angiogenic and proinflammatory cytokines. These findings demonstrate the ease of preparing DG-RBM and its great potential as a novel ocular topical formulation to treat corneal alkali burns by regulating HMGB1 signaling.


Asunto(s)
Alanina/análogos & derivados , Antioxidantes/uso terapéutico , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Proteína HMGB1/metabolismo , Quinolonas/uso terapéutico , Alanina/química , Alanina/uso terapéutico , Alanina/toxicidad , Animales , Antioxidantes/química , Antioxidantes/toxicidad , Western Blotting , Quemaduras Químicas/metabolismo , Pollos , Membrana Corioalantoides/efectos de los fármacos , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Ensayo de Inmunoadsorción Enzimática , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Ácido Glicirrínico/química , Humanos , Ratones , Soluciones Oftálmicas , Quinolonas/química , Quinolonas/toxicidad , Conejos , Transducción de Señal/fisiología , Hidróxido de Sodio/toxicidad , Cicatrización de Heridas/efectos de los fármacos
18.
Biomed Microdevices ; 23(2): 31, 2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34091727

RESUMEN

Undoubtedly, various kinds of nanomaterials are of great significance due to their enormous applications in diverse areas. The structure and productivity of nanomaterials are heavily dependent on the process used for their synthesis. The synthesizing process plays a vital role in shaping nanomaterials effectively for better productivity. The conventional method requires expensive and massive thermal instruments, a huge volume of reagents. This paper aims to develop an Automatic Miniaturized Temperature Controller (AMTC) device for the synthesis of nickel oxide (NiO), copper oxide (CuO) nanoparticles, and nanomicelles. The device features a low-cost, miniaturized, easy-to-operate with plug-and-play power source, precise temperature control, and geotagged real-time data logging facility for the producing nanoparticles. With a temperature accuracy of ± 2 °C, NiO and CuO nanoparticles, and nanomicelles are synthesized on AMTC device, and are subjected to different characterizations to analyze their morphological structure. The obtained mean size of NiO and CuO is 27.14 nm and 85.13 nm respectively. As a proof-of-principle, the synthesized NiO and CuO nanomaterials are validated for electrochemical sensing of dopamine, hydrazine, and uric acid. Furthermore, the study is conducted, wherein, Dexamethasone (Dex) loaded nanomicelles are developed using AMTC device and compared to the conventional thin-film hydration method. Subsequently, as a proof-of-application, the developed nanomicelles are evaluated for transcorneal penetration using exvivo goat cornea model. Ultimately, the proposed device can be utilized for performing a variety of controlled thermal reactions on a minuscule platform with an integrated and miniaturized approach for various applications.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Cobre , Teléfono Inteligente , Temperatura
19.
Mol Pharm ; 18(12): 4290-4298, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34731571

RESUMEN

The effect of mucin on ocular bioavailability depends on the extent to which it acts as a barrier or retention site. Mucus penetrating particles (MPPs) can evade the mucus entrapment and associated rapid clearance, but cationic nanoparticles have high adhesion to the mucosa. Both formulations can prolong the drug residence time on the surface of the eyes. The purpose of this work is to compare the effects of mucoadhesion of cationic nanoparticles and mucous permeability of MPPs on ocular bioavailability. Cationic nanosuspensions and drug-core MPP nanosuspensions were developed using the anti-solvent precipitation method. The results of X-ray diffraction revealed that CsA was amorphous. In vitro mucoadhesion evaluation demonstrated that cationic nanosuspensions enhanced the interaction with pig mucin about 5.0-6.0 fold compared to drug-core MPP nanosuspensions. A mucus permeation study by the transwell diffusion system showed that the Papp values of drug-core MPP nanosuspensions were 5.0-10.0 times higher than those of cationic nanosuspensions. In vivo ocular bioavailability evaluation of those CsA formulations was conducted in rabbits using a conventional nanosuspension as a comparison. The CsA concentrations in the cornea following the administration of a cationic nanosuspension and a drug-core MPP nanosuspension were 13,641.10 ng/g and 11,436.07 ng/g, respectively, significantly higher than that of the conventional nanosuspension (8310.762 ng/g). The results showed that both the cationic and MPP nanosuspensions were able to deliver CsA to anterior ocular tissues in effective therapeutic concentrations (10-20 µg/g) with topical drop instillation. The cationic nanosuspension could achieve relatively higher bioavailability than the MPP nanosuspension. The cationic nanosuspension would be a promising ocular drug delivery system.


Asunto(s)
Ciclosporina/administración & dosificación , Sistemas de Liberación de Medicamentos , Ojo/metabolismo , Moco/metabolismo , Nanopartículas/administración & dosificación , Animales , Disponibilidad Biológica , Cristalización , Ciclosporina/química , Ciclosporina/farmacocinética , Difusión , Liberación de Fármacos , Masculino , Conejos , Suspensiones
20.
Mol Pharm ; 18(10): 3719-3740, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34533317

RESUMEN

Nanoemulsions are considered as the most promising solution to improve the delivery of ophthalmic drugs. The design of ophthalmic nanoemulsions requires an extensive understanding of pharmaceutical as well as technological aspects related to the selection of excipients and formulation processes. This Review aims at providing the readers with a comprehensive summary of possible compositions of nanoemulsions, methods for their formulation (both laboratory and industrial), and differences between technological approaches, along with an extensive outline of the research methods enabling the confirmation of in vitro properties, pharmaceutical performance, and biological activity of the obtained product. The composition of the formulation has a major influence on the properties of the final product obtained with low-energy emulsification methods. Increasing interest in high-energy emulsification methods is a consequence of their scalability important from the industrial perspective. Considering the high-energy emulsification methods, both the composition and conditions of the process (e.g., device power level, pressure, temperature, homogenization time, or number of cycles) are important for the properties and stability of nanoemulsions. It is advisible to determine the effect of each parameter on the quality of the product to establish the optimal process parameters' range which, in turn, results in a more reproducible and efficient production.


Asunto(s)
Administración Oftálmica , Emulsiones/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/administración & dosificación , Emulsiones/síntesis química , Emulsiones/química , Emulsiones/normas , Oftalmopatías/tratamiento farmacológico , Humanos , Sistema de Administración de Fármacos con Nanopartículas/síntesis química , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/normas , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA