Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316564

RESUMEN

We recorded directly from the orbital (oPFC) and ventromedial (vmPFC) subregions of the orbitofrontal cortex (OFC) in 22 (9 female, 13 male) epilepsy patients undergoing intracranial electroencephalography (iEEG) monitoring during an experimental task in which the participants judged the accuracy of self-referential autobiographical statements as well as valenced self-judgments (SJs). We found significantly increased high-frequency activity (HFA) in ∼13% of oPFC sites (10/18 subjects) and 16% of vmPFC sites (4/12 subjects) during both of these self-referential thought processes, with the HFA power being modulated by the content of self-referential stimuli. The location of these activated sites corresponded with the location of fMRI-identified limbic network. Furthermore, the onset of HFA in the vmPFC was significantly earlier than that in the oPFC in all patients with simultaneous recordings in both regions. In 11 patients with available depression scores from comprehensive neuropsychological assessments, we documented diminished HFA in the OFC during positive SJ trials among individuals with higher depression scores; responses during negative SJ trials were not related to the patients' depression scores. Our findings provide new temporal and anatomical information about the mode of engagement in two important subregions of the OFC during autobiographical memory and SJ conditions. Our findings from the OFC support the hypothesis that diminished brain activity during positive self-evaluations, rather than heightened activity during negative self-evaluations, plays a key role in the pathophysiology of depression.


Asunto(s)
Epilepsia , Memoria Episódica , Humanos , Masculino , Femenino , Juicio , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética
2.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38866485

RESUMEN

During natural behavior, an action often needs to be suddenly stopped in response to an unexpected sensory input-referred to as reactive stopping. Reactive stopping has been mostly investigated in humans, which led to hypotheses about the involvement of different brain structures, in particular the hyperdirect pathway. Here, we directly investigate the contribution and interaction of two key regions of the hyperdirect pathway, the orbitofrontal cortex (OFC) and subthalamic nucleus (STN), using dual-area, multielectrode recordings in male rats performing a stop-signal task. In this task, rats have to initiate movement to a go-signal, and occasionally stop their movement to the go-signal side after a stop-signal, presented at various stop-signal delays. Both the OFC and STN show near-simultaneous field potential reductions in the beta frequency range (12-30 Hz) compared with the period preceding the go-signal and the movement period. These transient reductions (∼200 ms) only happen during reactive stopping, which is when the stop-signal was received after action initiation, and are well timed after stop-signal onset and before the estimated time of stopping. Phase synchronization analysis also showed a transient attenuation of synchronization between the OFC and STN in the beta range during reactive stopping. The present results provide the first direct quantification of local neural oscillatory activity in the OFC and STN and interareal synchronization specifically timed during reactive stopping.


Asunto(s)
Ritmo beta , Corteza Prefrontal , Núcleo Subtalámico , Animales , Masculino , Ratas , Núcleo Subtalámico/fisiología , Ritmo beta/fisiología , Corteza Prefrontal/fisiología , Sincronización Cortical/fisiología , Desempeño Psicomotor/fisiología , Ratas Long-Evans , Inhibición Psicológica , Tiempo de Reacción/fisiología
3.
Brain ; 147(6): 1953-1966, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38334506

RESUMEN

Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.


Asunto(s)
Demencia Frontotemporal , Conducta Social , Humanos , Demencia Frontotemporal/patología , Demencia Frontotemporal/psicología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/fisiopatología , Cognición Social , Cognición/fisiología
4.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128940

RESUMEN

The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.


Asunto(s)
Amígdala del Cerebelo , Discriminación en Psicología , Ritmo Gamma , Corteza Prefrontal , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Masculino , Corteza Prefrontal/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Amígdala del Cerebelo/fisiología , Ritmo Gamma/fisiología , Ratas , Discriminación en Psicología/fisiología , Ritmo beta/fisiología , Vías Nerviosas/fisiología , Recompensa , Percepción Auditiva/fisiología , Estimulación Acústica , Ratas Transgénicas
5.
Neuroimage ; 290: 120574, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467346

RESUMEN

Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.


Asunto(s)
Corteza Prefrontal , Recompensa , Humanos , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Encéfalo , Obesidad
6.
Eur J Neurosci ; 59(7): 1460-1479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38155094

RESUMEN

The orbitofrontal cortex (OFC) is a key node in the cortico-limbic-striatal circuitry that influences decision-making guided by the relative value of outcomes. Midbrain dopamine from either the ventral tegmental area (VTA) or the dorsal raphe nucleus (DRN) has the potential to modulate OFC neurons; however, it is unknown at what concentrations these terminals release dopamine. Male and female adult dopamine transporter (DAT)IRES-Cre-tdTomato mice were injected with AAV2/8-EF1a-DIO-eYFP into either the DRN or the VTA or the retrograde label cholera toxin B (CTB) 488 in the medial or lateral OFC. We quantified co-expression of CTB 488 or enhanced yellow fluorescent protein (eYFP) with tdTomato fluorescence in VTA or DRN and eYFP fibre density in the medial or lateral OFC. Both VTA and DRN dopamine neurons project to either the medial OFC or the lateral OFC, with greater expression of fibres in the medial OFC. Using fast-scan cyclic voltammetry, we detected optogenetically evoked dopamine from channelrhodopsin 2 (ChR2)-expressing VTA or DRN dopamine terminals in either the medial OFC or the lateral OFC. We assessed if optical stimulation of dopamine from the VTA or the DRN onto the medial OFC could alter layer V pyramidal neuronal firing; however, we did not observe a change in firing at stimulation parameters that evoked dopamine release from either projection even though bath application of dopamine with the monoamine transporter inhibitor, nomifensine, decreased firing. In summary, dopaminergic neurons from the VTA or the DRN project to the OFC and release submicromolar dopamine in the medial and lateral OFC.


Asunto(s)
Núcleo Dorsal del Rafe , Proteína Fluorescente Roja , Área Tegmental Ventral , Ratones , Masculino , Femenino , Animales , Área Tegmental Ventral/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Dopamina/metabolismo , Corteza Prefrontal/fisiología , Neuronas Dopaminérgicas/metabolismo
7.
BMC Psychiatry ; 24(1): 362, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745267

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) is characterized by persistent, unwanted thoughts and repetitive actions. Such repetitive thoughts and/or behaviors may be reinforced either by reducing anxiety or by avoiding a potential threat or harm, and thus may be rewarding to the individual. The possible involvement of the reward system in the symptomatology of OCD is supported by studies showing altered reward processing in reward-related regions, such as the ventral striatum (VS) and the orbitofrontal cortex (OFC), in adults with OCD. However, it is not clear whether this also applies to adolescents with OCD. METHODS: Using functional magnetic resonance imaging, two sessions were conducted focusing on the anticipation and receipt of monetary reward (1) or loss (2), each contrasted to a verbal (control) condition. In each session, adolescents with OCD (n1=31/n2=26) were compared with typically developing (TD) controls (n1=33/ n2=31), all aged 10-19 years, during the anticipation and feedback phase of an adapted Monetary Incentive Delay task. RESULTS: Data revealed a hyperactivation of the VS, but not the OFC, when anticipating both monetary reward and loss in the OCD compared to the TD group. CONCLUSIONS: These findings suggest that aberrant neural reward and loss processing in OCD is associated with greater motivation to gain or maintain a reward but not with the actual receipt. The greater degree of reward 'wanting' may contribute to adolescents with OCD repeating certain actions more and more frequently, which then become habits (i.e., OCD symptomatology).


Asunto(s)
Anticipación Psicológica , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Recompensa , Estriado Ventral , Humanos , Adolescente , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Masculino , Femenino , Anticipación Psicológica/fisiología , Estriado Ventral/fisiopatología , Estriado Ventral/diagnóstico por imagen , Adulto Joven , Niño , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Motivación/fisiología
8.
Behav Brain Res ; 458: 114737, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-37924850

RESUMEN

Aggressive behavior can have serious physical, psychological, and social consequences. However, little is known about the personality and neurological antecedents underlying aggressive behavior in children. The objective of this study was to investigate the relationship between self-esteem, aggression, and brain structure (i.e., cortical thickness and surface area) in a population of healthy children (N = 78; 9-12 years; mean age: 9.95 ± 0.90 years). The results revealed that self-esteem showed a negative association with aggression and significantly predicted aggressive behavior. No gender differences were found in aggression and its neural correlates. We performed the cortical parcellation method to further explore the neural foundations underlying the association of self-esteem with aggression. Children with higher aggression had increased cortical thickness in four clusters after multiple comparison correction: right medial orbitofrontal cortex, right lateral orbitofrontal cortex, right superior frontal gyrus, and left insula. In a mediation analysis, cortical thickness in the right medial orbitofrontal cortex contributed to the effect of self-esteem on aggression. These findings extend our understanding of morphological correlates of aggression in children, suggesting that an increased cortical thickness in childhood is a potential mechanism linking low self-esteem to aggression.


Asunto(s)
Agresión , Corteza Prefrontal , Humanos , Niño , Autoimagen , Personalidad , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética
9.
Exp Neurobiol ; 33(2): 99-106, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38724479

RESUMEN

Anosmia, characterized by the loss of smell, is associated not only with dysfunction in the peripheral olfactory system but also with changes in several brain regions involved in olfactory processing. Specifically, the orbitofrontal cortex is recognized for its pivotal role in integrating olfactory information, engaging in bidirectional communication with the primary olfactory regions, including the olfactory cortex, amygdala, and entorhinal cortex. However, little is known about alterations in structural connections among these brain regions in patients with anosmia. In this study, high-resolution T1-weighted images were obtained from participants. Utilizing the volumes of key brain regions implicated in olfactory function, we employed a structural covariance approach to investigate brain reorganization patterns in patients with anosmia (n=22) compared to healthy individuals (n=30). Our structural covariance analysis demonstrated diminished connectivity between the amygdala and entorhinal cortex, components of the primary olfactory network, in patients with anosmia compared to healthy individuals (z=-2.22, FDR-corrected p=0.039). Conversely, connectivity between the orbitofrontal cortex-a major region in the extended olfactory network-and amygdala was found to be enhanced in the anosmia group compared to healthy individuals (z=2.32, FDR-corrected p=0.039). However, the structural connections between the orbitofrontal cortex and entorhinal cortex did not differ significantly between the groups (z=0.04, FDR-corrected p=0.968). These findings suggest a potential structural reorganization, particularly of higher-order cortical regions, possibly as a compensatory effort to interpret the limited olfactory information available in individuals with olfactory loss.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38657896

RESUMEN

OBJECTIVE: Negative symptoms and neurocognitive impairments in psychosis correlate with their severity. Currently, there is no satisfactory treatment. We aimed to evaluate and compare the effects of repetitive transcranial magnetic stimulation(rTMS) on negative symptoms and neurocognitive impairments in patients in first-episode of psychosis(FEP) in a randomized controlled trial(RCT). METHOD: This is a single-site RCT of 85 patients with FEP. Patients were randomized to receive a 4-week course of active(n = 45) or sham rTMS(n = 40). Factor analysis was applied to a cross-sectional dataset of 744 FEP patients who completed negative symptom evaluation and neurocognitive battery tests. Two independent dimensions were generated and used for the K-means cluster analysis to produce sub-clusters. rTMS of 1-Hz was delivered to the right orbitofrontal(OFC) cortex. RESULTS: Two distinct dimensional factors of neurocognitive functions(factor-1) and negative symptoms(factor-2), and three clusters with distinctive features were generated. Significant improvements in factor-1 and factor-2 were observed after 4-weeks of rTMS treatment in both the active and sham rTMS groups. The repeated-measures analysis of variance revealed a significant effect of time×group(F = 5.594, p = 0.021, η2 = 0.073) on factor-2, but no effect of time×group on factor-1. Only improvements in negative symptoms were significantly different between the active and sham rTMS groups(p = 0.028). Patients in cluster-3 characterized by extensive negative symptoms, showed greater improvement in the active rTMS group than in the sham rTMS group. CONCLUSIONS: The 1-Hz right OFC cortex rTMS is more effective in reducing negative symptoms than neurocognitive impairments. It is especially effective in patients with dominantly negative symptoms in FEP.


Asunto(s)
Trastornos Psicóticos , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Trastornos Psicóticos/terapia , Trastornos Psicóticos/complicaciones , Adulto , Adulto Joven , Disfunción Cognitiva/terapia , Disfunción Cognitiva/etiología , Pruebas Neuropsicológicas/estadística & datos numéricos , Resultado del Tratamiento , Estudios Transversales , Corteza Prefrontal , Adolescente , Escalas de Valoración Psiquiátrica
11.
Psychiatry Res Neuroimaging ; 337: 111765, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104485

RESUMEN

Depressive rumination has been implicated in the onset, duration, and treatment response of refractory depression. Electroconvulsive therapy (ECT) is remarkably effective in treatment of refractory depression by modulating the functional coordination between brain hubs. However, the mechanisms by which ECT regulates depressive rumination remain unsolved. We investigated degree centrality (DC) in 32 pre- and post-ECT depression patients as well as 38 matched healthy controls. An identified brain region was defined as the seed to calculate functional connectivity (FC) in whole brains. Rumination was measured by the Ruminative Response Scale (RRS) and its relationships with identified DC and FC alterations were examined. We found a significant negative correlation between DC of the right orbitofrontal cortex (rOFC) before ECT and brooding level before and after treatment. Moreover, rOFC DC increased after ECT. DC of the left superior temporal gyrus (lSTG) was positively correlated with reflective level before intervention, while lSTG DC decreased after ECT. Patients showed elevated FC in the rOFC with default mode network. No significant association was found between decreased RRS scores and changes in DC and FC. Our findings suggest that functional changes in rOFC and lSTG may be associated with the beneficial effects of ECT on depressive rumination.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Imagen por Resonancia Magnética , Encéfalo , Corteza Prefrontal/diagnóstico por imagen
12.
Neuroimage Clin ; 41: 103553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38134743

RESUMEN

BACKGROUND: Social anhedonia is common within major depressive disorder (MDD) and associated with worse treatment outcomes. The orbitofrontal cortex (OFC) is implicated in both reward (medial OFC) and punishment (lateral OFC) in social decision making. Therefore, to understand the biology of social anhedonia in MDD, medial/lateral OFC metabolism, volume, and thickness, as well as structural connectivity to the striatum, amygdala, and ventral tegmental area/nucleus accumbens were examined. A positive relationship between social anhedonia and these neurobiological outcomes in the lateral OFC was hypothesized, whereas an inverse relationship was hypothesized for the medial OFC. The association between treatment-induced changes in OFC neurobiology and depression improvement were also examined. METHODS: 85 medication-free participants diagnosed with MDD were assessed with Wisconsin Schizotypy Scales to assess social anhedonia and received pretreatment simultaneous fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI), including structural and diffusion. Participants were then treated in an 8-week randomized placebo-controlled double-blind course of escitalopram. PET/MRI were repeated following treatment. Metabolic rate of glucose uptake was quantified from dynamic FDG-PET frames using Patlak graphical analysis. Structure (volume and cortical thickness) was quantified from structural MRI using Freesurfer. To assess structural connectivity, probabilistic tractography was performed on diffusion MRI and average FA was calculated within the derived tracts. Linear mixed models with Bonferroni correction were used to examine the relationships between variables. RESULTS: A significantly negative linear relationship between pretreatment social anhedonia score and structural connectivity between the medial OFC and the amygdala (estimated coefficient: -0.006, 95 % CI: -0.0108 - -0.0012, p-value = 0.0154) was observed. However, this finding would not survive multiple comparisons correction. No strong evidence existed to show a significant linear relationship between pretreatment social anhedonia score and metabolism, volume, thickness, or structural connectivity to any of the regions examined. There was also no strong evidence to suggest significant linear relationships between improvement in depression and percent change in these variables. CONCLUSIONS: Based on these multimodal findings, the OFC likely does not underlie social anhedonia in isolation and therefore should not be the sole target of treatment for social anhedonia. This is consistent with previous reports that other areas of the brain such as the amygdala and the striatum are highly involved in this behavior. Relatedly, amygdala-medial OFC structural connectivity could be a future target. The results of this study are crucial as, to our knowledge, they are the first to relate structure/function of the OFC with social anhedonia severity in MDD. Future work may need to involve a whole brain approach in order to develop therapeutics for social anhedonia.


Asunto(s)
Anhedonia , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/patología , Depresión , Fluorodesoxiglucosa F18 , Encéfalo , Imagen por Resonancia Magnética/métodos
13.
Biol Psychiatry ; 96(5): 342-351, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852897

RESUMEN

BACKGROUND: Abnormalities in cortical excitability and plasticity have been considered to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) can provide a direct evaluation of cortical responses to TMS. Here, we employed TMS-EEG to investigate cortical responses to orbitofrontal cortex (OFC) stimulation in schizophrenia. METHODS: In total, we recruited 92 drug-naïve patients with first-episode schizophrenia and 51 age- and sex-matched healthy individuals. For each participant, one session of 1-Hz repetitive TMS (rTMS) was delivered to the right OFC, and TMS-EEG data were obtained to explore the change in cortical-evoked activities before and immediately after rTMS during the eyes-closed state. The MATRICS Consensus Cognitive Battery was used to assess neurocognitive performance. RESULTS: The cortical responses indexed by global mean field amplitudes (i.e., P30, N45, and P60) were larger in patients with schizophrenia than in healthy control participants at baseline. Furthermore, after one session of 1-Hz rTMS over the right OFC, the N100 amplitude was significantly reduced in the healthy control group but not in the schizophrenia group. In the healthy control participants, there was a significant correlation between modulation of P60 amplitude by rTMS and working memory; however, this correlation was absent in patients with schizophrenia. CONCLUSIONS: Aberrant global cortical responses following right OFC stimulation were found in patients with drug-naïve first-episode schizophrenia, supporting its significance in the primary pathophysiology of schizophrenia.


Asunto(s)
Electroencefalografía , Corteza Prefrontal , Esquizofrenia , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Esquizofrenia/fisiopatología , Esquizofrenia/terapia , Femenino , Masculino , Corteza Prefrontal/fisiopatología , Adulto , Adulto Joven , Potenciales Evocados/fisiología
14.
Int J Clin Health Psychol ; 24(1): 100439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38226007

RESUMEN

Objective: Compared to clinical bulimia nervosa, sub-threshold bulimic symptoms are becoming more prevalent in non-clinical or general population, which is repeatedly linked with the connectivity in orbitofrontal cortex (OFC), including functionally heterogeneous the medial and lateral OFC (mOFC; lOFC). However, the specific connectivity patterns of the mOFC and lOFC in individuals with severe or mild bulimic symptoms (SB; MB) remain poorly understood. Methods: We first utilized resting-state functional connectivity (FC) and spectral dynamic causal modeling (spDCM) to investigate abnormal functional and effective connectivity (EC) of OFC subregions in adults with different severity of bulimic. The SB group (n = 21), MB group (n = 114), and healthy controls (HC, n = 91) underwent rs-fMRI scans. A generalized linear model was applied to determine the OFC-seeded whole-brain FC across the three groups. Subsequently, spDCM was used to estimate differences in EC among the three groups based on the FC results. Results: We observed a shared neural basis for SB and MB groups (i.e., weaker lOFC-superior parietal lobule connectivity), which may support the role of dysfunctional inhibitory control in general bulimic symptomatology. Whereas, SB group displayed greater lOFC-occipital pole connectivity than MB group, suggesting the specificity of the neural correlates of full-threshold/severe bulimia. The directional links from the mOFC to lOFC and amygdala could further explain the aberrant interactions of reward sensitivity with inhibitory control and homeostatic energy in sub-threshold/mild condition. Conclusion: The current study provides novel evidence that divergent connectivity patterns of the lOFC and mOFC may contribute to different severities of bulimia, which will expands our understanding of the neurobiological substrates underlying bulimia across a spectrum from healthy to unhealthy.

15.
Front Neurosci ; 18: 1364067, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903598

RESUMEN

Dopamine (DA) plays a pivotal role in reward processing, cognitive functions, and emotional regulation. The prefrontal cortex (PFC) is a critical brain region for these processes. Parvalbumin-positive (PV+) neurons are one of the major classes of inhibitory GABAergic neurons in the cortex, they modulate the activity of neighboring neurons, influencing various brain functions. While DA receptor expression exhibits age-related changes, the age-related changes of these receptors in PV+ neurons, especially in the PFC, remain unclear. To address this, we investigated the expression of DA D1 (D1R) and D2 (D2R) receptors in PV+ neurons within the orbitofrontal (OFC) and prelimbic (PrL) cortices at different postnatal ages (P28, P42, P56, and P365). We found that the expression of D1R and D2R in PV+ neurons showed both age- and region-related changes. PV+ neurons in the OFC expressed a higher abundance of D1 than those in the PrL, and those neurons in the OFC also showed higher co-expression of D1R and D2R than those in the PrL. In the OFC and PrL, D1R in PV+ neurons increased from P28 and reached a plateau at P42, then receded to express at P365. Meanwhile, D2R did not show significant age-related changes between the two regions except at P56. These results showed dopamine receptors in the prefrontal cortex exhibit age- and region-specific changes, which may contribute to the difference of these brain regions in reward-related brain functions.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38917880

RESUMEN

BACKGROUND: The impulsive choice is characterized by the preference for a small immediate reward over a bigger delayed one. The mechanisms underlying impulsive choices are linked to the activity in the Nucleus Accumbens (NAc), the orbitofrontal cortex (OFC), and the dorsolateral striatum (DLS). While the study of functional connectivity between brain areas has been key to understanding a variety of cognitive processes, it remains unclear whether functional connectivity differentiates impulsive-control decisions. METHODS: To study the functional connectivity both between and within NAc, OFC, and DLS during a delay discounting task, we concurrently recorded local field potential in NAc, OFC, and DLS in rats. We then quantified the degree of phase-amplitude coupling (PAC), coherence, and Granger Causality between oscillatory activities in animals exhibiting either a high (HI) or low (LI) tendency for impulsive choices. RESULTS: Our results showed a differential pattern of PAC during decision-making in OFC and NAc, but not in DLS. While theta-gamma PAC in OFC was associated with self-control decisions, a higher delta-gamma PAC in both OFC and NAc biased decisions toward impulsive choices in both HI and LI groups. Furthermore, during the reward event, Granger Causality analysis indicated a stronger NAc➔OFC gamma contribution in the HI group, while the LI group showed a higher OFC➔NAc gamma contribution. CONCLUSIONS: The overactivity in NAc during reward in the HI group suggests that exacerbated contribution of NAcCore can lead to an overvaluation of reward that biases the behavior toward the impulsive choice.


Asunto(s)
Toma de Decisiones , Descuento por Demora , Conducta Impulsiva , Núcleo Accumbens , Corteza Prefrontal , Recompensa , Animales , Núcleo Accumbens/fisiología , Descuento por Demora/fisiología , Masculino , Toma de Decisiones/fisiología , Ratas , Corteza Prefrontal/fisiología , Conducta Impulsiva/fisiología , Conducta de Elección/fisiología
17.
Biol Psychiatry ; 96(4): 287-299, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316332

RESUMEN

BACKGROUND: Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early-life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress. METHODS: Using a mouse model of chronic developmental stress, we determined the long-lasting consequences of ELS on 5-HT circuits and behavior in females and males. Using FosTRAP mice, we cross-correlated regional c-Fos density to determine brain-wide functional connectivity of the raphe nucleus. We next performed in vivo fiber photometry to establish ELS-induced deficits in 5-HT dynamics and optogenetics to stimulate 5-HT release to improve behavior. RESULTS: Adult female and male mice exposed to ELS showed heightened anxiety-like behavior. ELS further enhanced susceptibility to acute stress by disrupting the brain-wide functional connectivity of the raphe nucleus and the activity of 5-HT neuron population, in conjunction with increased orbitofrontal cortex (OFC) activity and disrupted 5-HT release in medial OFC. Optogenetic stimulation of 5-HT terminals in the medial OFC elicited an anxiolytic effect in ELS mice in a sex-dependent manner. CONCLUSIONS: These findings suggest a significant disruption in 5-HT-modulated brain connectivity in response to ELS, with implications for sex-dependent vulnerability. The anxiolytic effect of the raphe-medial OFC circuit stimulation has potential implications for developing targeted stimulation-based treatments for affective disorders that arise from early life adversities.


Asunto(s)
Núcleos del Rafe , Serotonina , Estrés Psicológico , Animales , Femenino , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Masculino , Serotonina/metabolismo , Ratones , Núcleos del Rafe/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Optogenética , Ansiedad/fisiopatología , Ansiedad/metabolismo , Vías Nerviosas/fisiopatología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Conducta Animal/fisiología
18.
Neuroscience ; 553: 19-39, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38977070

RESUMEN

Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear. In this study, female and male adolescent Sprague Dawley rats received one-hour restraint stress daily from postnatal day (PD) 32 to PD44. Corticosterone levels, body weights, food intake, body composition, and circulating adiposity and sex hormones were measured. On PD44, brain and blood samples were collected. Using RNA-sequencing, sex-specific differences in stress-induced differentially expressed (DE) genes were identified in subregions of the hypothalamus, limbic system, and prefrontal cortex. Canonical pathways reflected well-known sex-distinct maladies and diseases, substantiating the therapeutic potential of the DE genes found in the current study. Thus, we proposed specific sex distinct, adolescent stress-induced transcriptional changes found in the current study as examples of the molecular bases for sex differences witnessed in stress induced or exacerbated emotional and metabolic disorders. Future behavioral studies and single-cell studies are warranted to test the implications of the DE genes identified in this study in sex-distinct stress-induced susceptibilities.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Ratas Sprague-Dawley , Caracteres Sexuales , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/metabolismo , Femenino , Ratas , Encéfalo/metabolismo , Transcriptoma , Corteza Prefrontal/metabolismo , Corticosterona/sangre
19.
Brain Res Bull ; 208: 110896, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331299

RESUMEN

Research into the health benefits of scents is on the rise. However, little is known about the effects of continuous inhalation, such as wearing scents on clothing, on brain structure. Therefore, in this study, an intervention study was conducted on a total of 50 healthy female people, 28 in the intervention group and 22 in the control group, asking them to wear a designated rose scent on their clothes for a month. The effect of continuous inhalation of essential oil on the gray matter of the brain was measured by calculating changes in brain images of participants taken before and after the intervention using Magnetic Resonance Imaging (MRI). The results showed that the intervention increased the gray matter volume (GMV) of the whole brain and posterior cingulate cortex (PCC) subregion. On the other hand, the GMV of the amygdala and orbitofrontal cortex (OFC) did not change. This study is the first to show that continuous scent inhalation changes brain structure.


Asunto(s)
Sustancia Gris , Aceites Volátiles , Humanos , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Aceites Volátiles/farmacología , Corteza Cerebral , Encéfalo/diagnóstico por imagen , Corteza Prefrontal/patología , Imagen por Resonancia Magnética
20.
Cell Rep ; 43(6): 114355, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38870010

RESUMEN

Beliefs-attitudes toward some state of the environment-guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models, these results have implications for understanding paranoia.


Asunto(s)
Corteza Prefrontal , Animales , Corteza Prefrontal/patología , Masculino , Trastornos Paranoides , Macaca mulatta , Humanos , Tálamo/patología , Recompensa , Femenino , Cultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA