Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 591: 37-43, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34995984

RESUMEN

Antigen 43 is a surface-displayed autotransporter protein that mediates bacterial self-association and pathogenicity. The quality control factors that facilitate Ag43 crossing the periplasm and inserting into the outer membrane remain enigmatic, mostly because Ag43 is phase variable and associated with heterologous phenotypes, which obscures the mutational effects of potential quality control factors. Here, we describe a screening method that allowed us to isolate a subpopulation of Escherichia coli that consistently displays an Ag43-mediated autoaggregation phenotype. Based on this subpopulation, we analyzed how disruptions of known periplasmic chaperones affect Ag43 biogenesis. We found that only the disruption of surA reduced Ag43 levels and abolished the autoaggregation phenotype of cells, but surA disruption did not affect the phase-variable expression of agn43. Using purified proteins, we showed that SurA effectively protected the ß-barrel domain of Ag43 from aggregation. In contrast, the previously reported Ag43 biogenesis factor OsmY showed weak chaperoning effects on Ag43 only in the absence of SurA. Our results shed light on the roles of different periplasmic chaperones in Ag43 biogenesis and provide a methodology applicable to the study of other phase-variable proteins.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Adhesinas de Escherichia coli/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Fenotipo , Estructura Secundaria de Proteína
2.
Front Microbiol ; 9: 1098, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29887855

RESUMEN

Yersinia ruckeri is a bacterium causing fish infection processes at temperatures below the optimum for growth. A derivative Tn5 transposon was used to construct a library of Y. ruckeri mutants with transcriptional fusions between the interrupted genes and the promoterless luxCDABE and lacZY operons. In vitro analysis of ß-galactosidase activity allowed the identification of 168 clones having higher expression at 18°C than at 28°C. Among the interrupted genes a SAM-dependent methyltransferase, a diguanylated cyclase, three genes involved in legionaminic acid synthesis and three transcriptional regulators were defined. In order to determine, via bioluminescence emission, the in vivo expression of some of these genes, two of the selected mutants were studied. In one of them, the acrR gene coding a repressor involved in regulation of the AcrAB-TolC expulsion pump was interrupted. This mutant was found to be highly resistant to compounds such as chloramphenicol, tetracycline, and ciprofloxacin. Although acrR mutation was not related to virulence in Y. ruckeri, this mutant was useful to analyze acrR expression in fish tissues in vivo. The other gene studied was osmY which is activated under osmotic stress and is involved in virulence. In this case, complemented mutant was used for experiments with fish. In vivo analysis of bioluminescence emission by these two strains showed higher values for acrR in gut, liver and adipose tissue, whereas osmY showed higher luminescence in gut and, at the end of the infection process, in muscle tissue. Similar results were obtained in ex vivo assays using rainbow trout tissues. The results indicated that this kind of approach was useful for the identification of genes related to virulence in Y. ruckeri and also for the in vivo and in vitro studies of each of the selected genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA