RESUMEN
MAIN CONCLUSION: Heat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures. Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.
Asunto(s)
Fragaria , Respuesta al Choque Térmico , Fragaria/genética , Fragaria/fisiología , Fragaria/metabolismo , Fragaria/crecimiento & desarrollo , Respuesta al Choque Térmico/fisiología , Fotosíntesis , Cambio Climático , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas , Calor , Frutas/genética , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genéticaRESUMEN
Heat stress interrupts physiological thermostability and triggers biochemical responses that are essential for plant survival. However, there is limited knowledge on the speed plants adjust to heat in hours and days, and which adjustments are crucial. Tropical-subtropical rainforest tree species (Polyscias elegans) were heated at 40°C for 5 d, before returning to 25°C for 13 d of recovery. Leaf heat tolerance was quantified using the temperature at which minimal chl a fluorescence sharply rose (Tcrit ). Tcrit , metabolites, heat shock protein (HSP) abundance and membrane lipid fatty acid (FA) composition were quantified. Tcrit increased by 4°C (48-52°C) within 2 h of 40°C exposure, along with rapid accumulation of metabolites and HSPs. By contrast, it took > 2 d for FA composition to change. At least 2 d were required for Tcrit , HSP90, HSP70 and FAs to return to prestress levels. The results highlight the multi-faceted response of P. elegans to heat stress, and how this response varies over the scale of hours to days, culminating in an increased level of photosynthetic heat tolerance. These responses are important for survival of plants when confronted with heat waves amidst ongoing global climate change.
Asunto(s)
Termotolerancia , Proteínas de Choque Térmico/metabolismo , Plantas/metabolismo , Bosque Lluvioso , Temperatura , Árboles/metabolismo , Clima TropicalRESUMEN
The cytoplasm of bacterial cells is a highly crowded cellular compartment that possesses considerable osmotic potential. As a result, and owing to the semipermeable nature of the cytoplasmic membrane and the semielastic properties of the cell wall, osmotically driven water influx will generate turgor, a hydrostatic pressure considered critical for growth and viability. Both increases and decreases in the external osmolarity inevitably trigger water fluxes across the cytoplasmic membrane, thus impinging on the degree of cellular hydration, molecular crowding, magnitude of turgor, and cellular integrity. Here, we assess mechanisms that permit the perception of osmotic stress by bacterial cells and provide an overview of the systems that allow them to genetically and physiologically cope with this ubiquitous environmental cue. We highlight recent developments implicating the secondary messenger c-di-AMP in cellular adjustment to osmotic stress and the role of osmotic forces in the life of bacteria-assembled in biofilms.
Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/metabolismo , Exposición a Riesgos Ambientales , Osmorregulación , Presión Osmótica , Adaptación FisiológicaRESUMEN
Understanding the responses of olive trees to drought stress is crucial for improving cultivation and developing drought-tolerant varieties. Water transport and storage within the plant is a key factor in drought-tolerance strategies. Water management can be based on a variety of factors such as stomatal control, osmoprotectant molecules, proteins and wood properties. The aim of the study was to evaluate the water management strategy under drought stress from an anatomical and biochemical point of view in three young Italian olive cultivars (Giarraffa, Leccino and Maurino) previously distinguished for their physiological and metabolomic responses. For each cultivar, 15 individuals in pots were exposed or not to 28 days of water withholding. Every 7 days, the content of sugars (including mannitol), proline, aquaporins, osmotins, and dehydrins, in leaves and stems, as well as the chemical and anatomical characteristics of the wood of the three cultivars, were analyzed. 'Giarraffa' reduced glucose levels and increased mannitol production, while 'Leccino' accumulated more proline. Both 'Leccino' and 'Maurino' increased sucrose and aquaporin levels, possibly due to their ability to remove embolisms. 'Maurino' and 'Leccino' accumulated more dehydrins and osmotins. While neither genotype nor stress affected wood chemistry, 'Maurino' had a higher vessel-to-xylem area ratio and a larger hydraulic diameter, which allows it to maintain a high transpiration rate but may make it more susceptible to cavitation. The results emphasized the need for an integrated approach, highlighting the importance of the relative timing and sequence of each parameter analyzed, allowing, overall, to define a "strategy" rather than a "response" to drought of each cultivar.
Asunto(s)
Olea , Proteínas de Plantas , Agua , Madera , Olea/metabolismo , Olea/crecimiento & desarrollo , Olea/fisiología , Madera/metabolismo , Proteínas de Plantas/metabolismo , Agua/metabolismo , Prolina/metabolismo , Sequías , Acuaporinas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Manitol/metabolismo , Estrés FisiológicoRESUMEN
Salinity stress is one of the major hurdles in agriculture which adversely affects crop production. It can cause osmotic imbalance, ion toxicity that disrupts essential nutrient balance, impaired nutrient uptake, stunted growth, increased oxidative stress, altered metabolism, and diminished crop yield and quality. However, foliar application of osmoprotectant is becoming popular to resolve this issue in crops. These osmoprotectants regulate the cellular osmotic balance and protect plants from the detrimental effects of high salt concentrations. Furthermore, the role of arbuscular mycorrhizae (AMF) is also established in this regard. These AMF effectively reduce the salinity negative effects by improving the essential nutrient balance via the promotion of root growth. That's why keeping in mind the effectiveness of osmoprotectants current study was conducted on cotton. Total of six levels of γ-Aminobutyric acid (GABA = 0 mM, 0. 5 mM, and 1 mM) and ectoine (ECT = 0 mM, 0.25 mM, and 0.5 mM) were applied as treatments in 3 replications. Results showed that 0.5 mM γ-Aminobutyric acid and ectoine performed significantly best for the improvement in cotton growth attributes. It also caused significant enhancement in K and Ca contents of the leaf, stem, bur, and seeds compared to the control. Furthermore, 0.5 mM γ-Aminobutyric acid and ectoine also caused a significant decline in Cl and Na contents of leaf, stem, bur, and seeds of cotton compared to control under salinity stress. A significant enhancement in chlorophyll contents, gas exchange attributes, and decline in electrolyte leakage validated the effectiveness of 0.5 mM γ-Aminobutyric acid and ectoine over control. In conclusion, 0.5 mM γ-Aminobutyric acid and ectoine have the potential to mitigate the salinity stress in cotton.
Asunto(s)
Micorrizas , Suelo , Antioxidantes , Micorrizas/fisiología , Cloruro de Sodio/farmacología , Ácido gamma-AminobutíricoRESUMEN
Rapeseed (Brassica napus L.) is an important crop for edible oil, vegetables, and biofuel. Rapeseed growth and development require a minimum temperature of ~1-3 °C. Notably, frost damage occurs during overwintering, posing a serious threat to the productivity and yield of rapeseed. MYB proteins are important transcription factors (TFs) in plants, and have been proven to be involved in the regulation of stress responses. However, the roles of the MYB TFs in rapeseed under cold stress conditions are yet to be fully elucidated. To better understand the molecular mechanisms of one MYB-like 17 gene, BnaMYBL17, in response to low temperature, the present study found that the transcript level of BnaMYBL17 is induced by cold stress. To characterize the gene's function, the 591 bp coding sequence (CDS) from rapeseed was isolated and stably transformed into rapeseed. The further functional analysis revealed significant sensitivity in BnaMYBL17 overexpression lines (BnaMYBL17-OE) after freezing stress, suggesting its involvement in freezing response. A total of 14,298 differentially expressed genes relative to freezing response were found based on transcriptomic analysis of BnaMYBL17-OE. Overall, 1321 candidate target genes were identified based on differential expression, including Phospholipases C1 (PLC1), FCS-like zinc finger 8 (FLZ8), and Kinase on the inside (KOIN). The qPCR results confirmed that the expression levels of certain genes showed fold changes ranging from two to six when compared between BnaMYBL17-OE and WT lines after exposure to freezing stress. Furthermore, verification indicated that BnaMYBL17 affects the promoter of BnaPLC1, BnaFLZ8, and BnaKOIN genes. In summary, the results suggest that BnaMYBL17 acts as a transcriptional repressor in regulating certain genes related to growth and development during freezing stress. These findings provide valuable genetic and theoretical targets for molecular breeding to enhance freezing tolerance in rapeseed.
Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Brassica rapa/genética , Regulación de la Expresión Génica de las Plantas , Clonación MolecularRESUMEN
Dry eye disease is among the most prevalent diseases affecting the ocular surface. Artificial tears remain the cornerstone therapy for its management. There are currently a wide variety of marketed artificial tears available to choose from. These artificial tears differ significantly in their composition and formulation. This article reviews the physicochemical and biological properties of artificial tear components and how these characteristics determine their use and efficacy in the management of dry eye. Furthermore, this article also discusses the various formulations of artificial tears such as macro and nanoemulsion and the type of preservatives present in them.
Asunto(s)
Síndromes de Ojo Seco , Gotas Lubricantes para Ojos , Humanos , Gotas Lubricantes para Ojos/farmacología , Gotas Lubricantes para Ojos/uso terapéutico , Síndromes de Ojo Seco/tratamiento farmacológico , Vehículos Farmacéuticos , Lágrimas , Soluciones Oftálmicas/farmacología , Soluciones Oftálmicas/uso terapéuticoRESUMEN
Carrot is one of the nutritious vegetable crops sensitive to drought stress resulting in loss of quality and yield. There are a lot of studies on detailed molecular mechanisms of drought stress response of main crops; however, very little information available on vegetables, including carrots. Hence, in this study, we investigated root transcriptome profiles from the meristematic region of two contrasting purple carrot (B7262A, drought tolerant; P1129, drought sensitive) lines under varying stress levels (85% and 70%) by using RNA-Seq technique. The morpho-physiological and biochemical response of B7262A line exhibited tolerance behavior to both DS (85% and 70%). RNA-Seq analysis revealed that 15,839 genes were expressed commonly in both carrot lines. The carrot line B7262A showed regulation of 514 genes in response to 85% DS, whereas P1129 showed differential regulation of 622 genes under 70% DS. The B7262A carrot line showed higher upregulation of transcripts that suggested its resilient behavior contrary to P1129 line. Furthermore, validation of transcript gene by qRT-PCR also confirmed the RNA-Seq analysis resulting in elevated expression levels of MYB48 transcription factor, MAPK mitogen-activated protein kinase ANP1, GER geraniol 8-hydroxylase, ABA ABA-induced in somatic embryo 3, FBOX putative F-box protein, FRO ferric reduction oxidase, and PDR probable disease resistance protein. Current study provided unprecedented insights of purple carrot lines that can be potentially exploited for the screening and development of resilient carrot.
Asunto(s)
Daucus carota , Sequías , Daucus carota/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Fitomejoramiento , Estrés Fisiológico/genética , TranscriptomaRESUMEN
The small multidrug resistance (SMR) protein EmrE resides in the inner membrane and provides resistance against a wide range of antiseptic quaternary cationic compounds (QCCs) for the Gram-negative bacterium Escherichia coli. We have reported previously that overexpression of the emrE gene results in the reduction of pH and osmotic tolerance, likely through EmrE-mediated biological QCC-based osmoprotectant efflux, indicating a potential physiological role for EmrE beyond providing drug resistance. EmrE is the most studied member of SMR transporter family; however, it is not known how the substrates translocated by EmrE move across the periplasm and through the outer membrane (OM). We have shown that the OM protein OmpW participates in the EmrE-mediated substrate efflux process and provided a hypothesis for the present study that additional OM and periplasmic proteins participate in the translocation process. To test the hypothesis, we conducted alkaline pH-based growth phenotype screens under emrE overexpression conditions. This screen identified 10 additional genes that appear to contribute to the EmrE-coupled osmoprotectant efflux: gspD, hofQ, yccZ, acrA, emrA, emrB, proX, osmF, dcrB and yggM. Further screening of these genes using a hyperosmotic growth phenotype assay in the presence and the absence of the osmoprotectant glycine betaine identified ompW and two periplasmic protein genes, dcrB and yggM, are mechanistically linked to EmrE.
Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Betaína/metabolismo , Proteínas de Escherichia coli/metabolismo , Presión Osmótica , Antiportadores/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismoRESUMEN
Phi thickenings are peculiar secondary cell wall thickenings found in radial walls of cortical cells in plant roots. However, while thickenings are widespread in the plant kingdom, research into their development has been lacking. Here, we describe a simple system for rapid induction of phi thickenings in primary roots of Brassica. Four-day-old seedlings were transferred from control agar plates to new plates containing increased levels of osmotica. Phi thickening development occurred within a narrow region of the differentiation zone proportional to osmolarity, with cellulose deposition and lignification starting after 12h and 15h, respectively. However, osmoprotectants not only failed to induce phi thickenings, but inhibited induction when tested in combination with thickening-inducing osmotica. An independent, biomechanical pathway exists regulating phi thickening induction, with root growth rates and substrate texture being important factors in determining thickening induction. Phi thickening development is also controlled by stress-related plant hormones, most notably jasmonic acid, but also abscisic acid. Our research not only provides the first understanding of the developmental pathways controlling phi thickening induction, but also provides tools with which the functions of these enigmatic structures might be clarified.
Asunto(s)
Brassica , Raíces de Plantas , Brassica/fisiología , Ciclopentanos , Presión Osmótica , Oxilipinas/metabolismo , Raíces de Plantas/metabolismoRESUMEN
Dry eye disease (DED), a multifactorial disease of the tears and ocular system, causes loss of tear film homeostasis with damage to the ocular surface. This study aimed to assess whether a peculiar matrix based on sodium hyaluronate (HA), xanthan gum (XNT), glycine (GLY) and betaine (BET) as osmoprotectants, could be involved in biological responses. Wound healing assay on human corneal epithelial (HCE) cells in monolayer showed a synergistic effect of the combination of HA + XNT (**p ≤ 0.01) together with an efficient extracellular matrix remodeling of the formulation in SkinEthic™ HCE 3D-model sought by integrin beta-1 (ITGß1) expression and morphological analysis by hematoxylin and eosin (H&E), compared to a reference marketed product. The synergistic effect of HA + XNT + GLY + BET showed an antioxidant effect on HCE cells (***p ≤ 0.001). Real-time PCR analysis showed that the combination of GLY + BET seemed to ameliorate the effect exhibited by the single osmoprotectants in reducing tumor necrosis factor-alpha (TNFα, #p ≤ 0.05), interleukin-1 beta (IL1ß, ####p ≤ 0.0001) and cyclooxygenases-2 (COX2, ####p ≤ 0.0001) genes in SIRC cells under hyperosmotic stress. Furthermore, pretreatment with XNT, alone and in combination (##p ≤ 0.01), reduced COX2 expression in human non-small cell lung cancer cells (A549). Finally, the formulation was well-tolerated following q.i.d. ocular administration in rabbits during a 28-day study. Due to the synergistic effect of its components, the matrix proved able to repair the ocular surface restoring cell homeostasis and to protect the ocular surface from pro-inflammatory pathways activation and oxidative damage, thus behaving as a reactive oxygen species (ROS) scavenger.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Síndromes de Ojo Seco , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclooxigenasa 2 , Síndromes de Ojo Seco/metabolismo , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/metabolismo , Conejos , Lágrimas/metabolismoRESUMEN
Salt stress severely affects the growth and productivity of Glycyrrhiza uralensis. Our previous research found that the endophyte Bacillus cereus G2 alleviated the osmotic and oxidative stress in G. uralensis exposed to salinity. However, the mechanism is still unclear. Here, a pot experiment was conducted to analyse the change in parameters related to osmotic adjustment and antioxidant metabolism by G2 in salt-stressed G. uralensis at the physio-biochemistry and transcriptome levels. The results showed that G2 significantly increased proline content by 48 %, glycine betaine content by 75 % due to activated expression of BADH1, and soluble sugar content by 77 % due to upregulated expression of α-glucosidase and SS, which might help to decrease the cell osmotic potential, enable the cell to absorb water, and stabilize the cell's protein and membrane structure, thereby alleviating osmotic stress. Regarding antioxidant metabolism, G2 significantly decreased malondialdehyde (MDA) content by 27 %, which might be ascribed to the increase in superoxide dismutase (SOD) activity that facilitated the decrease in the superoxide radical (O2â¾) production rate; it also increased the activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX), which helped stabilize the normal level of hydrogen peroxide (H2O2). G2 also increased glutathione (GSH) content by 65 % due to increased glutathione reductase (GR) activity and GSH/GSSG ratio, but G2 decreased oxidized glutathione (GSSG) content by 13 % due to decreased activity of dehydroascorbate reductase (DHAR), which could provide sufficient substrates for the ascorbate-glutathione (AsA-GSH) cycle to eliminate excess H2O2 that was not cleared in a timely manner by the antioxidant enzyme system. Taken together, G2 alleviated osmotic stress by increasing proline, soluble sugar, and glycine betaine contents and alleviated oxidative stress by the synergistic effect of antioxidant enzymes and the AsA-GSH cycle. Therefore, the results may be useful for explaining the mechanism by which endophyte inoculation regulates the salt tolerance of crops.
Asunto(s)
Glycyrrhiza uralensis , Plantones , Bacillus cereus , Transcriptoma , Antioxidantes , Disulfuro de Glutatión , Peróxido de Hidrógeno , Betaína/farmacología , Estrés Salino , Estrés Oxidativo , Glutatión , Azúcares , ProlinaRESUMEN
Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant -Leafamine®-a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.
Asunto(s)
Aminoácidos , Lactuca , Aminoácidos/metabolismo , Lactuca/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Agua/químicaRESUMEN
Abiotic stresses are the major environmental factors that play a significant role in decreasing plant yield and production potential by influencing physiological, biochemical, and molecular processes. Abiotic stresses and global population growth have prompted scientists to use beneficial strategies to ensure food security. The use of organic compounds to improve tolerance to abiotic stresses has been considered for many years. For example, the application of potential external osmotic protective compounds such as proline is one of the approaches to counteract the adverse effects of abiotic stresses on plants. Proline level increases in plants in response to environmental stress. Proline accumulation is not just a signal of tension. Rather, according to research discussed in this article, this biomolecule improves plant resistance to abiotic stress by rising photosynthesis, enzymatic and non-enzymatic antioxidant activity, regulating osmolyte concentration, and sodium and potassium homeostasis. In this review, we discuss the biosynthesis, sensing, signaling, and transport of proline and its role in the development of various plant tissues, including seeds, floral components, and vegetative tissues. Further, the impacts of exogenous proline utilization under various non-living stresses such as drought, salinity, high and low temperatures, and heavy metals have been extensively studied. Numerous various studies have shown that exogenous proline can improve plant growth, yield, and stress tolerance under adverse environmental factors.
Asunto(s)
Plantas , Prolina , Sequías , Desarrollo de la Planta , Salinidad , Estrés Fisiológico/fisiologíaRESUMEN
Salinity is a ubiquitous stressor, depleting osmotic potential and affecting the tomato seedlings' development and productivity. Considering this critical concern, we explored the salinity response in tomato seedlings by evaluating them under progressive salt stress duration (0, 3, 6, and 12 days). Intriguingly, besides the adverse effect of salt stress on tomato growth the findings exhibited a significant role of tomato antioxidative system, RBOH genes, ABA biosynthesis, and signaling transcription factor for establishing tolerance to salinity stress. For instance, the activities of enzymatic and non-enzymatic antioxidants continued to incline positively with the increased levels of reactive oxygen species (O2â¢-, H2O2), MDA, and cellular damage, suggesting the scavenging capacity of tomato seedlings against salt stress. Notably, the RBOH transcription factors activated the hydrogen peroxide-mediated signalling pathway that induced the detoxification mechanisms in tomato seedlings. Consequently, the increased gene expression of antioxidant enzymes and the corresponding ratio of non-enzymatic antioxidants AsA-GSH suggested the modulation of antioxidants to survive the salt-induced oxidative stress. In addition, the endogenous ABA level was enhanced under salinity stress, indicating higher ABA biosynthesis and signalling gene expression. Subsequently, the upregulated transcript abundance of ABA biosynthesis and signalling-related genes suggested the ABA-mediated capacity of tomato seedlings to regulate homeostasis under salt stress. The current findings have revealed fascinating responses of the tomato to survive the salt stress periods, in order to improve the abiotic stress tolerance in tomato.
Asunto(s)
Vías Biosintéticas , Perfilación de la Expresión Génica/métodos , Tolerancia a la Sal , Solanum lycopersicum/crecimiento & desarrollo , Factores de Transcripción/genética , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estrés Oxidativo , Fotosíntesis , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismoRESUMEN
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Sequías , Fitomejoramiento/métodos , Suelo , Estrés Fisiológico/genéticaRESUMEN
MAIN CONCLUSION: The elevation of transcript levels of GhDREB1B causes the accumulation of osmoregulants and mitigation of reactive oxygen species, which contributes to the enhanced resistance to chilling stress in AiSheng98 cotton. Low temperature is one of the key environmental stresses that impairs cotton growth and restricts fiber productivity. Dehydration responsive element binding (DREB) transcription factors play an important role in cold response in plants by modulating the transcription level of cold-responsive genes to protect the plants from low-temperature stress. Here, we showed that GhDREB1B, a copy number variant in the AiSheng98 (AS98) cotton mutant, significantly improved chilling tolerance in cotton seedlings, while silencing of GhDREB1B made transgenic cotton sensitive to chilling stress in AS98 cotton compared with control plants. Elevated GhDREB1B transcript level activated the expression of major cold-responsive genes. Genome-wide expression profiling by RNA sequencing revealed the upregulation of genes related to fatty acids, lipid proteins, osmoprotection, and anti-oxidative enzymes in AiSheng98. Excessive accumulation of malondialdehyde (MDA) and higher ion leakage rates occurred in wild-type LFH10 plants when compared to those of Aisheng98 during chilling stress, signifying lower chilling tolerance in the wild-type than in Aisheng98. Furthermore, the Aisheng98 mutant under chilling stress accumulated higher levels of free proline and soluble sugar than LFH10 accumulated. These results suggest that GhDREB1B is a positive regulator and its variant can alter the expression patterns of major low-temperature stress-related genes and enhance chilling tolerance in cotton.
Asunto(s)
Variaciones en el Número de Copia de ADN , Regulación de la Expresión Génica de las Plantas , Frío , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genéticaRESUMEN
PURPOSE: To develop an easy-to-perform combined model in human corneal epithelial cells (HCECs) and Balb/c mice macrophages J774.A1 (MP) for preliminary screening of potential ophthalmic therapeutic substances. METHODS: HCECs were exposed to different osmolarities (350-500 mOsm/L) and MTT assay was employed for cell survival and flow cytometry to assess apoptosis-necrosis and relative cell size (RCS) distribution. Effectiveness of Betaine, L-Carnitine, Taurine at different concentrations (ranging from 20 mM to 200 mM) was studied. Also, mucoadhesive polymers such as Hyaluronic acid (HA) and Hydroxypropylmethylcellulose (HPMC) (0.4 and 0.8%) were evaluated. Cells were pre-incubated with the compounds (8h) and then exposed to hyperosmotic stress (470 mOsm/L) for 16h. Moreover, anti-inflammatory activity was performed in LPS-stimulated MP. RESULTS: Exposure to hyperosmotic solutions between 450 and 500 mOsm/L promoted the highest cell death after 16h exposures (p < 0.0001) with a drop in viability to 34.96% ± 11.77 for 470 mOsm/L. Pre-incubation with Betaine at 150 mM and 200 mM provided the highest cell survival against hyperosmolarity (66.01% ± 3.65 and 65.90% ± 0.78 respectively) while HA 0.4% was the most effective polymer in preventing cell death (42.2% ± 3.60). Flow cytometry showed that Betaine and Taurine at concentrations between 150-200 mM and 20-80 mM respectively presented the highest anti-apoptotic activity. Also, HA and HPMC polymers reduced apoptotic-induced cell death. All osmoprotectants modified RCS, and polymers increased their value over 100%. L-Carnitine 50 mM, Taurine 40 mM and HA 0.4% presented the highest TNF-α inhibition activity (60%) albeit all of them showed anti-inflammatory inhibition percentages higher than 20% CONCLUSIONS: HCECs hyperosmolar model combined with inflammatory conditions in macrophages allows the screening of osmoprotectants by simulating chronic hyperosmolarity (16h) and inflammation (24h).
Asunto(s)
Síndromes de Ojo Seco/tratamiento farmacológico , Epitelio Corneal/efectos de los fármacos , Soluciones Hipertónicas/farmacología , Inflamación/fisiopatología , Macrófagos/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Betaína/farmacología , Carnitina/farmacología , Supervivencia Celular , Células Cultivadas , Síndromes de Ojo Seco/fisiopatología , Epitelio Corneal/metabolismo , Citometría de Flujo , Humanos , Ácido Hialurónico/farmacología , Derivados de la Hipromelosa/farmacología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Concentración Osmolar , Taurina/farmacología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of α-TC; and (3) tmt transgenic line overaccumulating α-TC. Raman spectra revealed that salt-exposed α-TC accumulating plants were more flexible in regulating chlorophyll, carotenoid and polysaccharide levels than TC deficient mutants, while the plants overaccumulating γ-TC had the lowest levels of these biocompounds. Tocopherol composition and NaCl concentration affected xanthophyll cycle by changing the rate of violaxanthin de-epoxidation and zeaxanthin formation. NaCl treated plants with altered TC composition accumulated less oligosaccharides than WT plants. α-TC deficient plants increased their oligosaccharide levels and reduced maltose amount, while excessive accumulation of α-TC corresponded with enhanced amounts of maltose. Salt-stressed TC-deficient mutants and tmt transgenic line exhibited greater proline levels than WT plants, lower chlorogenic acid levels, and lower activity of catalase and peroxidases. α-TC accumulating plants produced more methylated proline- and glycine- betaines, and showed greater activity of superoxide dismutase than γ-TC deficient plants. Under salt stress, α-TC demonstrated a stronger regulatory effect on carbon- and nitrogen-related metabolites reorganization and modulation of antioxidant patterns than γ-TC. This suggested different links of α- and γ-TCs with various metabolic pathways via various functions and metabolic loops.
Asunto(s)
Arabidopsis/metabolismo , Estrés Salino , Tocoferoles/metabolismo , Arabidopsis/fisiología , Concentración Osmolar , Especies Reactivas de Oxígeno/metabolismo , Xantófilas/metabolismoRESUMEN
The increasing culinary use of onion (Alium cepa) raises pressure on the current production rate, demanding sustainable approaches for increasing its productivity worldwide. Here, we aimed to investigate the beneficial effects of licorice (Glycyrrhiza glabra) root extract (LRE) in improving growth, yield, nutritional status, and antioxidant properties of two high-yielding onion cultivars, Shandaweel and Giza 20, growing under field conditions in two consecutive years. Our results revealed that pretreatments of both onion cultivars with LRE exhibited improved growth indices (plant height and number of leaves) and yield-related features (bulb length, bulb diameter, and bulb weight) in comparison with the corresponding LRE-devoid control plants. Pretreatments with LRE also improved the nutritional and antioxidant properties of bulbs of both cultivars, which was linked to improved mineral (e.g., K+ and Ca2+) acquisition, and heightened activities of enzymatic antioxidants (e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase) and increased levels of non-enzymatic antioxidants (e.g., ascorbic acid, reduced glutathione, phenolics, and flavonoids). LRE also elevated the contents of proline, total free amino acids, total soluble carbohydrates, and water-soluble proteins in both onion bulbs. In general, both cultivars displayed positive responses to LRE pretreatments; however, the Shandaweel cultivar performed better than the Giza 20 cultivar in terms of yield and, to some extent, bulb quality. Collectively, our findings suggest that the application of LRE as biostimulant might be an effective strategy to enhance bulb quality and ultimately the productivity of onion cultivars under field conditions.