Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Immunity ; 57(4): 674-699, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599165

RESUMEN

Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.


Asunto(s)
Inflamasomas , Receptores de Reconocimiento de Patrones , Inflamasomas/metabolismo , Piroptosis , Inmunidad Innata , Nucleótidos
2.
Immunol Rev ; 321(1): 246-262, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37823450

RESUMEN

Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.


Asunto(s)
Apoptosis , Piroptosis , Humanos , Muerte Celular , Síndrome de Liberación de Citoquinas , Biología
3.
Trends Immunol ; 44(3): 201-216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36710220

RESUMEN

ADAR1 and ZBP1 are the only two mammalian proteins that contain Zα domains, which are thought to bind to nucleic acids in the Z-conformation. These two molecules are crucial in regulating diverse biological processes. While ADAR1-mediated RNA editing supports host survival and development, ZBP1-mediated immune responses provide host defense against infection and disease. Recent studies have expanded our understanding of the functions of ADAR1 and ZBP1 beyond their classical roles and established their fundamental regulation of innate immune responses, including NLRP3 inflammasome activation, inflammation, and cell death. Their roles in these processes have physiological impacts across development, infectious and inflammatory diseases, and cancer. In this review, we discuss the functions of ADAR1 and ZBP1 in regulating innate immune responses in development and disease.


Asunto(s)
Inmunidad Innata , Ácidos Nucleicos , Animales , Humanos , Muerte Celular , Inflamación/metabolismo , Mamíferos
4.
J Biol Chem ; : 107676, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151726

RESUMEN

Innate immunity is the body's first line of defense against disease, and regulated cell death is a central component of this response that balances pathogen clearance and inflammation. Cell death pathways are generally categorized as non-lytic and lytic. While non-lytic apoptosis has been extensively studied in health and disease, lytic cell death pathways are increasingly implicated in infectious and inflammatory diseases and cancers. Staurosporine (STS) is a well-known inducer of non-lytic apoptosis. However, in this study, we observed that STS also induces lytic cell death at later timepoints. Using biochemical assessments with genetic knockouts, pharmacological inhibitors, and gene silencing, we identified that STS triggered PANoptosis via the caspase-8/RIPK3 axis, which was mediated by RIPK1. PANoptosis is a unique, lytic, innate immune cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. Deletion of caspase-8 and RIPK3, core components of the PANoptosome complex, protected against STS-induced lytic cell death. Overall, our study identifies STS as a time-dependent inducer of lytic inflammatory cell death, PANoptosis. These findings emphasize the importance of understanding trigger- and time-specific activation of distinct cell death pathways to advance our understanding of the molecular mechanisms of innate immunity and cell death for clinical translation.

5.
J Biol Chem ; 299(9): 105141, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37557956

RESUMEN

The innate immune system provides the first line of defense against pathogens and cellular insults and is activated by pattern recognition receptors sensing pathogen- or damage-associated molecular patterns. This activation can result in inflammation via cytokine release as well as the induction of lytic regulated cell death (RCD). Innate immune signaling can also induce the expression of interferon regulatory factor 1 (IRF1), an important molecule in regulating downstream inflammation and cell death. While IRF1 has been shown to modulate some RCD pathways, a comprehensive evaluation of its role in inflammatory cell death pathways is lacking. Here, we examined the role of IRF1 in cell death during inflammasome and PANoptosome activation using live cell imaging, Western blotting, and ELISA in primary murine macrophages. IRF1 contributed to the induction of ZBP1- (Z-DNA binding protein 1), AIM2- (absent in melanoma-2), RIPK1- (receptor interacting protein kinase 1), and NLRP12 (NOD-like receptor family, pyrin domain-containing 12)-PANoptosome activation and PANoptosis. Furthermore, IRF1 regulated the cell death under conditions where inflammasomes, along with caspase-8 and RIPK3, act as integral components of PANoptosomes to drive PANoptosis. However, it was dispensable for other inflammasomes that form independent of the PANoptosome to drive pyroptosis. Overall, these findings define IRF1 as an upstream regulator of PANoptosis and suggest that modulating the activation of molecules in the IRF1 pathway could be used as a strategy to treat inflammatory and infectious diseases associated with aberrant inflammatory cell death.


Asunto(s)
Muerte Celular , Proteínas de Unión al ADN , Inflamasomas , Inflamación , Factor 1 Regulador del Interferón , Péptidos y Proteínas de Señalización Intracelular , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratones , Inflamasomas/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Macrófagos/inmunología
6.
Apoptosis ; 29(5-6): 799-815, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347337

RESUMEN

PANoptosis is a form of inflammatory programmed cell death that is regulated by the PANoptosome. This PANoptosis possesses key characteristics of pyroptosis, apoptosis, and necroptosis, yet cannot be fully explained by any of these cell death modes. The unique nature of this cell death mechanism has garnered significant interest. However, the specific role of PANoptosis-associated features in gastric cancer (GC) is still uncertain. Patients were categorized into different PAN subtypes based on the expression of genes related to the PANoptosome. We conducted a systematic analysis to investigate the variations in prognosis and tumor microenvironment (TME) among these subtypes. Furthermore, we developed a risk score, called PANoptosis-related risk score (PANS), which is constructed from genes associated with the PANoptosis. We comprehensively analyzed the correlation between PANS and GC prognosis, TME, immunotherapy efficacy and chemotherapeutic drug sensitivity. Additionally, we performed in vitro experiments to validate the impact of Keratin 7 (KRT7) on GC. We identified two PAN subtypes (PANcluster A and B). PANoptosome genes were highly expressed in PANcluster A. PANcluster A has the characteristics of favorable prognosis, abundant infiltration of anti-tumor lymphocytes, and sensitivity to immunotherapy, thus it was categorized as an immune-inflammatory type. Meanwhile, our constructed PANS can effectively predict the prognosis and immune efficacy of GC. Patients with low PANS have a good prognosis, and have the characteristics of high tumor mutation load (TMB), high microsatellite instability (MSI), low tumor purity and sensitivity to immunotherapy. In addition, PANS can also identify suitable populations for different chemotherapy drugs. Finally, we confirmed that KRT7 is highly expressed in GC. Knocking down the expression of KRT7 significantly weakens the proliferation and migration abilities of GC cells. The models based on PANoptosis signature help to identify the TME features of GC and can effectively predict the prognosis and immune efficacy of GC. Furthermore, the experimental verification results of KRT7 provide theoretical support for anti-tumor treatment.


Asunto(s)
Inmunoterapia , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/diagnóstico , Humanos , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Queratina-7/genética , Queratina-7/metabolismo , Apoptosis/genética
7.
Eur J Immunol ; 53(11): e2250235, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36782083

RESUMEN

Regulated cell death (RCD) triggered by innate immune activation is an important strategy for host survival during pathogen invasion and perturbations of cellular homeostasis. There are two main categories of RCD, including nonlytic and lytic pathways. Apoptosis is the most well-characterized nonlytic RCD, and the inflammatory pyroptosis and necroptosis pathways are among the best known lytic forms. While these were historically viewed as independent RCD pathways, extensive evidence of cross-talk among their molecular components created a knowledge gap in our mechanistic understanding of RCD and innate immune pathway components, which led to the identification of PANoptosis. PANoptosis is a unique innate immune inflammatory RCD pathway that is regulated by PANoptosome complexes upon sensing pathogens, pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) or the cytokines produced downstream. Cytosolic innate immune sensors and regulators, such as ZBP1, AIM2 and RIPK1, promote the assembly of PANoptosomes to drive PANoptosis. In this review, we discuss the molecular components of the known PANoptosomes and highlight the mechanisms of PANoptosome assembly, activation and regulation identified to date. We also discuss how PANoptosomes and mutations in PANoptosome components are linked to diseases. Given the impact of RCD, and PANoptosis specifically, across the disease spectrum, improved understanding of PANoptosomes and their regulation will be critical for identifying new therapeutic targets and strategies.


Asunto(s)
Apoptosis , Piroptosis , Muerte Celular , Citosol , Inmunidad Innata
8.
Biochem Genet ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436818

RESUMEN

Cell death resistance significantly contributes to poor therapeutic outcomes in various cancers. PANoptosis, a unique inflammatory programmed cell death (PCD) pathway activated by specific triggers and regulated by the PANoptosome, possesses key features of apoptosis, pyroptosis, and necroptosis, but these cannot be accounted for by any of the three PCD pathways alone. While existing studies on PANoptosis have predominantly centered on infectious and inflammatory diseases, its role in cancer malignancy has been understudied. In this comprehensive investigation, we conducted pan-cancer analyses of PANoptosome component genes across 33 cancer types. We characterized the genetic, epigenetic, and transcriptomic landscapes, and introduced a PANoptosome-related potential index (PANo-RPI) for evaluating the intrinsic PANoptosome assembly potential in cancers. Our findings unveil PANo-RPI as a prognostic factor in numerous cancers, including KIRC, LGG, and PAAD. Crucially, we established a significant correlation between PANo-RPI and tumor immune responses, as well as the infiltration of diverse lymphoid and myeloid cell subsets across nearly all cancer types. Moreover, a high PANo-RPI was consistently associated with improved immunotherapy response and efficacy, as evidenced by re-analysis of multiple immunotherapy cohorts. In conclusion, our study suggests that targeting PANoptosome components and modulating PANoptosis may hold tremendous therapeutic potential in the context of cancer.

9.
Immunol Rev ; 297(1): 26-38, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32729116

RESUMEN

ZBP1 has been characterized as a critical innate immune sensor of not only viral RNA products but also endogenous nucleic acid ligands. ZBP1 sensing of the Z-RNA produced during influenza virus infection induces cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). PANoptosis is a coordinated cell death pathway that is driven through a multiprotein complex called the PANoptosome and enables crosstalk and co-regulation among these processes. During influenza virus infection, a key step in PANoptosis and PANoptosome assembly is the formation of the ZBP1-NLRP3 inflammasome. When Z-RNA is sensed, ZBP1 recruits RIPK3 and caspase-8 to activate the ZBP1-NLRP3 inflammasome. Several other host factors have been found to be important for ZBP1-NLRP3 inflammasome assembly, including molecules involved in the type I interferon signaling pathway and caspase-6. Additionally, influenza viral proteins, such as M2, NS1, and PB1-F2, have also been shown to regulate the ZBP1-NLRP3 inflammasome. This review explains the functions of ZBP1 and the mechanistic details underlying the activation of the ZBP1-NLRP3 inflammasome and the formation of the PANoptosome. Improved understanding of the ZBP1-NLRP3 inflammasome will direct the development of therapeutic strategies to target infectious and inflammatory diseases.


Asunto(s)
Necroptosis , Piroptosis , Apoptosis , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión al ARN
10.
Trends Immunol ; 41(12): 1083-1099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33153908

RESUMEN

The innate immune system acts as the first line of defense against pathogens, including coronaviruses (CoVs). Severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV are epidemic zoonotic CoVs that emerged at the beginning of the 21st century. The recently emerged virus SARS-CoV-2 is a novel strain of CoV that has caused the coronavirus 2019 (COVID-19) pandemic. Scientific advancements made by studying the SARS-CoV and MERS-CoV outbreaks have provided a foundation for understanding pathogenesis and innate immunity against SARS-CoV-2. In this review, we focus on our present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion during SARS-CoV, MERS-CoV, and SARS-CoV-2 infection. We also discuss how the pathogenesis of these viruses influences these biological processes.


Asunto(s)
COVID-19/inmunología , Muerte Celular/inmunología , Citocinas/inmunología , Inmunidad Innata/inmunología , Inflamasomas/inmunología , SARS-CoV-2/inmunología , Animales , Humanos
11.
Cell Mol Life Sci ; 79(10): 531, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36169732

RESUMEN

In response to infection or sterile insults, inflammatory programmed cell death is an essential component of the innate immune response to remove infected or damaged cells. PANoptosis is a unique innate immune inflammatory cell death pathway regulated by multifaceted macromolecular complexes called PANoptosomes, which integrate components from other cell death pathways. Growing evidence shows that PANoptosis can be triggered in many physiological conditions, including viral and bacterial infections, cytokine storms, and cancers. However, PANoptosomes at the single cell level have not yet been fully characterized. Initial investigations have suggested that key pyroptotic, apoptotic, and necroptotic molecules including the inflammasome adaptor protein ASC, apoptotic caspase-8 (CASP8), and necroptotic RIPK3 are conserved components of PANoptosomes. Here, we optimized an immunofluorescence procedure to probe the highly dynamic multiprotein PANoptosome complexes across various innate immune cell death-inducing conditions. We first identified and validated antibodies to stain endogenous mouse ASC, CASP8, and RIPK3, without residual staining in the respective knockout cells. We then assessed the formation of PANoptosomes across innate immune cell death-inducing conditions by monitoring the colocalization of ASC with CASP8 and/or RIPK3. Finally, we established an expansion microscopy procedure using these validated antibodies to image the organization of ASC, CASP8, and RIPK3 within the PANoptosome. This optimized protocol, which can be easily adapted to study other multiprotein complexes and other cell death triggers, provides confirmation of PANoptosome assembly in individual cells and forms the foundation for a deeper molecular understanding of the PANoptosome complex and PANoptosis to facilitate therapeutic targeting.


Asunto(s)
Inflamasomas , Análisis de la Célula Individual , Animales , Apoptosis , Caspasa 8/metabolismo , Inflamasomas/metabolismo , Ratones , Microscopía , Piroptosis
12.
Oral Dis ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650218

RESUMEN

OBJECTIVE: The purpose of the systematic review is to verify the presence of PANoptosis in periodontitis based on the published literatures studying cell death in periodontitis. MATERIALS AND METHODS: We conducted a comprehensive review of literature studying the types of cell death in vitro cellular experiments, in vivo rodent studies and clinical studies from three major databases: PubMed, Scopus, and Web of Science. The present systematic review was recorded in the PROSPERO database, under registration number CRD42022383456. RESULTS: In total, 51 articles were included in this study. Our analysis of in vitro cell models revealed that pyroptosis, necroptosis, and apoptosis could be induced by periodontal pathogens in macrophages, fibroblasts, stem cells, and periodontal ligament cells. Furthermore, three types of cell death were detected in in vivo rodent periodontitis models. Clinical studies on human periodontitis tissue specimens and gingival crevicular fluid (GCF) showed that some key proteins related to pyroptosis, necroptosis, and apoptosis were elevated in periodontitis. CONCLUSIONS: Various studies have established similar in vivo and in vitro models with three modes of death detected under the same conditions, revealing complex interactions between different types of cell death pathways in periodontitis and the potential for PANoptosis to occur in periodontitis.

13.
J Transl Med ; 20(1): 542, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419185

RESUMEN

The innate immune system serves as the first line of defense against invading pathogens; however, dysregulated innate immune responses can induce aberrant inflammation that is detrimental to the host. Therefore, careful innate immune regulation is critical during infections. The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in global morbidity and mortality as well as socio-economic stresses. Innate immune sensing of SARS-CoV-2 by multiple host cell pattern recognition receptors leads to the production of various pro-inflammatory cytokines and the induction of inflammatory cell death. These processes can contribute to cytokine storm, tissue damage, and acute respiratory distress syndrome. Here, we discuss the sensing of SARS-CoV-2 to induce innate immune activation and the contribution of this innate immune signaling in the development and severity of COVID-19. In addition, we provide a conceptual framework for innate immunity driving cytokine storm and organ damage in patients with severe COVID-19. A better understanding of the molecular mechanisms regulated by innate immunity is needed for the development of targeted modalities that can improve patient outcomes by mitigating severe disease.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2 , Inmunidad Innata , Muerte Celular
14.
J Biol Chem ; 295(52): 18276-18283, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33109609

RESUMEN

Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.


Asunto(s)
Apoptosis , Hongos/patogenicidad , Inflamación/patología , Necroptosis , Piroptosis , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Inflamasomas , Inflamación/etiología , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/genética
15.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494299

RESUMEN

Innate immune receptors initiate a host immune response, or inflammatory response, upon detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Among the innate immune receptors, nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play a pivotal role in detecting cytosolic PAMPs and DAMPs. Some NLRs can form a multiprotein cytosolic complex known as the inflammasome. Inflammasome activation triggers caspase-1-mediated cleavage of the pore-forming protein gasdermin D (GSDMD), which drives a form of inflammatory cell death called pyroptosis. Parallelly, activated caspase-1 cleaves immature cytokines pro-IL-1ß and pro-IL-18 into their active forms, which can be released via GSDMD membrane pores. The NLR family apoptosis inhibitory proteins (NAIP)-NLR family caspase-associated recruitment domain-containing protein 4 (NLRC4) inflammasome is important for mounting an immune response against Gram-negative bacteria. NLRC4 is activated through NAIPs sensing type 3 secretion system (T3SS) proteins from Gram-negative bacteria, such as Salmonella Typhimurium. Mutations in NAIPs and NLRC4 are linked to autoinflammatory disorders in humans. In this review, we highlight the role of the NAIP/NLRC4 inflammasome in host defense, autoinflammatory diseases, cancer, and cell death. We also discuss evidence pointing to a role of NLRC4 in PANoptosis, which was recently identified as a unique inflammatory programmed cell death pathway with important physiological relevance in a range of diseases. Improved understanding of the NLRC4 inflammasome and its potential roles in PANoptosis paves the way for identifying new therapeutic strategies to target disease.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Autoinmunidad , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas de Unión al Calcio/genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Necrosis/genética , Necrosis/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Piroptosis/genética
16.
Trends Mol Med ; 30(1): 74-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977994

RESUMEN

The innate immune system initiates cell death pathways in response to pathogens and cellular stress. Cell death can be either non-lytic (apoptosis) or lytic (PANoptosis, pyroptosis, and necroptosis). PANoptosis has been identified as an inflammatory, lytic cell death pathway driven by caspases and RIPKs that is regulated by PANoptosome complexes, making it distinct from other cell death pathways. Several PANoptosome complexes (including ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosomes) have been characterized to date. Furthermore, PANoptosis is implicated in infectious and inflammatory diseases, cancers, and homeostatic perturbations. Therefore, targeting its molecular components offers significant potential for therapeutic development. This review covers PANoptosomes and their assembly, PANoptosome-mediated cell death mechanisms, and ongoing progress in developing therapeutics that target PANoptosis.


Asunto(s)
Apoptosis , Inflamasomas , Humanos , Muerte Celular , Caspasas , Homeostasis
17.
Curr Protoc ; 4(7): e1112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073015

RESUMEN

The innate immune system is the first line of host defense. Innate immune activation utilizes pattern recognition receptors to detect pathogens, pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs), and homeostatic alterations and drives inflammatory signaling pathways and regulated cell death. Cell death activation is critical to eliminate pathogens and aberrant or damaged cells, while excess activation can be linked to inflammation, tissue damage, and disease. Therefore, there is increasing interest in studying cell death mechanisms to understand the underlying biology and identify therapeutic strategies. However, there are significant technical challenges, as many cell death pathways share key molecules with each other, and genetic models where these cell death molecules are deleted remain the gold standard for evaluation. Furthermore, extensive crosstalk has been identified between the cell death pathways pyroptosis, apoptosis, necroptosis, and the more recently characterized PANoptosis, which is defined as a prominent, unique innate immune, lytic, and inflammatory cell death pathway initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosomes. PANoptosomes are multi-protein complexes assembled by innate immune sensor(s) in response to pathogens, PAMPs, DAMPs, cytokines, and homeostatic changes that drive PANoptosis. In this article, we provide methods for molecularly defining distinct cell death pathways, including PANoptosis, using both genetic and chemical approaches through western blot, LDH assay, and microscopy readouts. This procedure allows for the assessment of cell death on the cell population and single-cell levels even without access to genetic models. Having this comprehensive workflow that is more accessible to all labs will improve our ability as a scientific community to accelerate discovery. Using these protocols will help identify new innate immune sensors that drive PANoptosis and define the molecular mechanisms and regulators involved to establish new targets for clinical translation. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction and quantification of cell death using live cell imaging Alternate Protocol 1: Quantification of cell death using LDH Alternate Protocol 2: Assessment of cell death complexes in single cells using immunofluorescence staining Basic Protocol 2: Analysis of cell death mechanisms by immunoblots (western blots).


Asunto(s)
Muerte Celular , Inmunidad Innata , Humanos , Animales , Necroptosis/inmunología , Ratones
18.
Int Immunopharmacol ; 139: 112710, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029229

RESUMEN

PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.


Asunto(s)
Apigenina , Glucuronatos , Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno , Apigenina/farmacología , Apigenina/uso terapéutico , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Necroptosis/efectos de los fármacos , Masculino , Quinasas Quinasa Quinasa PAM/metabolismo , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Zearalenona/administración & dosificación , Lactonas , Resorcinoles
19.
J Exp Clin Cancer Res ; 43(1): 168, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877579

RESUMEN

PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/patología , Muerte Celular , Necroptosis , Microambiente Tumoral/inmunología , Animales , Piroptosis , Apoptosis
20.
Front Immunol ; 14: 1120034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845112

RESUMEN

PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.


Asunto(s)
Apoptosis , Enfermedades Neurodegenerativas , Humanos , Apoptosis/fisiología , Piroptosis , Muerte Celular , Necroptosis , Enfermedades Neurodegenerativas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA