Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Appl Microbiol ; 132(5): 3705-3716, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35064983

RESUMEN

AIMS: Entomopathogenic Metarhizium fungi are widely recognized for their biological control potential. In Cuba, several fungus-based bio-insecticides have been developed and are produced as part of integrated pest management (IPM) programmes for economically relevant agricultural pests. Screening of fungal isolates from the INISAV strain collection was used for the development of bio-insecticides against important pest insects as, for example the sweet potato weevil, Cylas formicarius. METHODS AND RESULTS: Six fungal isolates from Cuba were microscopically, morphologically and molecular-taxonomically characterized using marker sequences ef1a, rpb1 and rpb2, and the 5TEF region of the ef1a gene. Five isolates were assigned to the species Metarhizium anisopliae sensu stricto and one isolate to Metarhizium robertsii. The pathogenic potential was evaluated against adults of C. formicarius, and growth and conidial production on different nutritional media were determined. Metarhizium anisopliae strain LBM-267 displayed pronounced virulence against the sweet potato weevil and abundant conidia production on several culture media. CONCLUSIONS: Entomopathogenic fungal isolates from Cuba were assigned to the taxonomic species M. anisopliae sensu stricto and M. robertsii. Virulence assessment with respect to C. formicarius led to the identification of two M. anisopliae isolates holding biocontrol potential. Isolate LBM-11 has previously been developed into the bio-insecticide METASAVE-11 that is widely used to control several species of plant pathogenic weevils, Lepidoptera and thrips in Cuba. Isolate LBM-267 has not been employed previously but is as virulent against C. formicarius as LBM-11; its growth and conidial production capacities on different nutritional media will likely facilitate economically feasible bio-insecticide development. SIGNIFICANCE AND IMPACT OF THE STUDY: Metarhizium anisopliae isolate LBM-267 has been selected as a promising candidate for biocontrol of the sweet potato weevil, an economically important agricultural pest in Cuba, and for further R&D activities within the framework of the Biological Control Program of Cuba.


Asunto(s)
Escarabajos , Insecticidas , Ipomoea batatas , Metarhizium , Gorgojos , Animales , Cuba , Ipomoea batatas/microbiología , Control Biológico de Vectores/métodos , Esporas Fúngicas , Virulencia , Gorgojos/microbiología
2.
J Fungi (Basel) ; 9(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888252

RESUMEN

(1) Background: The entomopathogenic fungus Metarhizium anisopliae sensu lato forms a species complex, comprising a tight cluster made up of four species, namely M. anisopliae sensu stricto, M. pinghaense, M. robertsii and M. brunneum. Unambiguous species delineation within this "PARB clade" that enables both the taxonomic assignment of new isolates and the identification of potentially new species is highly solicited. (2) Methods: Species-discriminating primer pairs targeting the ribosomal intergenic spacer (rIGS) sequence were designed and a diagnostic PCR protocol established. A partial rIGS sequence, referred to as rIGS-ID800, was introduced as a molecular taxonomic marker for PARB species delineation. (3) Results: PARB species from a validation strain set not implied in primer design were clearly discriminated using the diagnostic PCR protocol developed. Using rIGS-ID800 as a single sequence taxonomic marker gave rise to a higher resolution and statistically better supported delineation of PARB clade species. (4) Conclusions: Reliable species discrimination within the Metarhizium PARB clade is possible through both sequencing-independent diagnostic PCR and sequencing-dependent single marker comparison, both based on the rIGS marker.

3.
Fungal Biol ; 123(12): 855-863, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733728

RESUMEN

Metarhizium anisopliae is a complex of cryptic species with wide geographical distribution and versatile lifestyles. In this study, 45 isolates of the Metarhizium genus harbored in the "Colección de Hongos Entomopatógenos" of the "Centro Nacional de Referencia de Control Biológico" from different substrates, insect-host, and localities from Colima, Mexico, were phylogenetically identified using the 5'end of translation elongation factor 1-α (5'TEF) and intergenic nuclear region MzFG543igs. Seven species were recognized, M. acridum (n = 26), M. pemphigi (n = 1), and within the PARB and MGT clades: M. anisopliae (N = 7; sensu stricto: n = 2; sensu lato: n = 5), M. brunneum (n = 2), M. guizhouense (n = 2), M. pingshaense (n = 2), and M. robertsii (n = 5). Twenty-nine SSR markers were developed for M. acridum; according to the analysis of 12 polymorphic SSR loci, M. acridum showed low genetic diversity, revealing five genotypes with a dominant one (n = 21). Based on the analysis of 13 specific SSR loci, 14 genotypes were identified within the PARB and MGT clades. This study contributes to generating valuable information about the community structure and genotypic diversity of Metharhizum species in the state of Colima, Mexico.


Asunto(s)
ADN de Hongos/genética , Variación Genética , Genotipo , Metarhizium/clasificación , Metarhizium/genética , Repeticiones de Microsatélite , Filogenia , Animales , Insectos/microbiología , Metarhizium/aislamiento & purificación , México , Factor 1 de Elongación Peptídica/genética , Plantas/microbiología , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA