Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Food Chem X ; 22: 101274, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524778

RESUMEN

The occurrence of persistent organic pollutants like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in food represents a public health concern. The BfR MEAL Study was initiated to generate a comprehensive data base of occurrence data for chemicals in the most consumed foods in Germany. Non-dioxin-like PCBs (NDL-PCBs) and PBDEs were analysed in 300 foods, purchased and prepared representatively for the eating behaviour of the population in Germany. Highest levels of NDL-PCBs and PBDEs were detected in spiny dogfish, cod liver, herring, and eel. High NDL-PCB and PBDE levels were observed in other oily fish, wild boar meat, sheep liver, and high-fat dairy products. The comparison of food from conventional and organic production revealed higher NDL-PCB values in the food group 'meat and meat products' if produced organically. Occurrence data of this study will improve future dietary exposure and risk assessments in Germany.

2.
Environ Pollut ; 307: 119583, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35680065

RESUMEN

Polychlorinated biphenyls (PCBs) have been attracting global concern due to their persistence and toxicity. However, the study on the metabolites of PCBs in freshwater fish is limited. In this study, the metabolites of 2,2',4,5,5'-Pentachlorobiphenyl (PCB101) in silver crucian carp (Carassius auratus gibelio) were identified for the first time. After intraperitoneal injection of PCB101 (2 mg/kg), the results showed that it could be metabolized to at least three types of metabolites, including hydroxylated (OH-), methoxylated (MeO-) and methyl sulfonated (MeSO2-) PCB101. The OH- metabolites identified in most tissues were 3-OH-PCB101and 4-OH-PCB101, such as liver, gallbladder, blood and muscle. MeSO2- metabolites identified in gallbladder, blood and brain were 3-MeSO2-PCB101 and 4-MeSO2-PCB101. Meanwhile, the MeO- metabolite identified in liver, gallbladder, blood and spleen of silver crucian carp was 4-MeO-PCB101. The investigation of the types and structures of PCB101 and its metabolites, as well as the tissue distribution and accumulation characteristics in silver crucian carp are beneficial to understand the transformation and metabolic mechanisms of PCBs in aquatic organisms. It is of great significance to identify potential pollution hazards of precursor compounds and their metabolites on aquatic products and ensure the quality and safety of aquatic products.


Asunto(s)
Carpas , Bifenilos Policlorados , Animales , Carpas/metabolismo , Carpa Dorada , Bifenilos Policlorados/metabolismo
3.
J Hazard Mater ; 342: 131-138, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28826055

RESUMEN

A novel cathodic photoelectrochemical (PEC) sensing method was developed for fast and convenient detection of PCB101 taking advantages of the excellent PEC reducibility of Pd quantum dots (QDs) modified molecularly imprinted TiO2 nanorods (NRs). Attributed to the efficient PEC reduction of PCB101 on the cathode surface, sensitive cathodic photocurrent would be produced with increasing PCB101 concentration under a negative bias potential, giving a low PCB101 detection limit of 5×10-14molL-1. Meanwhile, molecular imprinting (MI) technique was integrated by in situ introduction of MI sites on the surface of TiO2 NRs, so that highly specific adsorption and reduction of PCB101 congener could be obtained. The results indicated that the PEC sensor presented excellent selectivity toward PCB101 with the coexistance of 100-fold excess of other pollutants including the PCBs congeners, other aromatic pollutants, and heavy metal ions. The cathodic PEC sensor was sucessfully applied in determination of PCB101 in real water and soil samples, and the results had good consistency with that obtained by the traditional GC-MS. This work provides a new concept and research basis for fabricating cathodic PEC sensor for the environmental pollutants with specific structures that were easily reduced.

4.
Sci Total Environ ; 607-608: 1096-1102, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28724247

RESUMEN

Environmental exposure to persistent organic pollutants (POPs) has been reported to be relevant in the population of the Canary Islands (Spain), especially that of organochlorine pesticides. On the other hand, the population of this archipelago presents a high prevalence of type 2 diabetes (T2D), and it has been recently reported that environmental chemical contamination could play a role in the development of this disease. We performed a cross-sectional study in a representative sample from this archipelago to evaluate whether serum levels of selected POPs could be considered as risk factors for diabetes in this population. Serum levels of 30 POPs were determined in 429 adults (9.3% with T2D). We found that serum levels of p,p'-DDE (DDE), PCB-153 and PCB-118 were significantly higher among subjects having diabetes than in non-diabetic subjects (p=0.001, p=0.046, and p<0.0001, respectively). We observed a positive correlation between serum p,p'-DDE and glucose levels. Serum p,p'-DDE was identified as a risk factor for diabetes in univariate analysis in the whole series, and it remained as an independent risk factor for diabetes in subjects with serum glucose <126mg/dL (multivariate analysis, Exp(B)=1.283, CI 95% (1.023-1.611), p=0.031). Those normoglycemic subjects that are most exposed to p,p'-DDE (95th percentile: serum p,p'-DDE>5µg/L) seem to be those people at higher risk. Our results showed that p,p'-DDE levels were significantly higher among subjects having diabetes. These findings should be considered by public health Authorities to implement measures devoted to minimize human exposure to pollutants that could be harmful to the population.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Contaminantes Ambientales/sangre , Obesidad/epidemiología , Bifenilos Policlorados/sangre , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , España/epidemiología
5.
Biosens Bioelectron ; 81: 503-509, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27016911

RESUMEN

A highly selective and sensitive photoelectrochemical (PEC) sensor was fabricated for fast and convenient detection of PCB 101 in environmental water samples with a low detection limit of 1.0×10(-14)molL(-1) based on single crystalline TiO2 nanorods (NRs). By integration with molecular imprinting (MI) technique, the PEC sensor's selectivity towards PCB 101 was significantly improved, so that the interference caused by 100-fold excess of PCB 126 and PCB 77 which had similar structure with PCB 101 was below 37%, not to mention other coexisted pollutants. This high selectivity could be attributed to the high-quality expression of the molecular imprinting sites on the rigid and smooth surface of single crystalline TiO2 NRs on which PCB 101 could be selectively and preferentially adsorbed. The oriented and multiple halogen bonds formed between PCB 101 and the molecular imprinting sites played a critical role in improving the recognition ability of the PEC sensor. Meanwhile, the one dimensional nanorods structure of TiO2 was beneficial for the efficient separation of photogenerated electrons and holes, leading to enhanced photocurrent response and further improving the sensitivity of the PEC sensor.


Asunto(s)
Técnicas Electroquímicas/métodos , Monitoreo del Ambiente/métodos , Bifenilos Policlorados/análisis , Titanio/química , Contaminantes Químicos del Agua/análisis , Cristalización , Luz , Límite de Detección , Impresión Molecular , Nanotubos/química , Nanotubos/ultraestructura , Procesos Fotoquímicos , Ríos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA