Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 756
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364992

RESUMEN

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Viento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligasas/metabolismo , Calmodulina/metabolismo
2.
Small ; 20(25): e2310341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225705

RESUMEN

The safety, low cost, and high power density of aqueous Zn-based devices (AZDs) appeal to large-scale energy storage. Yet, the presence of hydrogen evolution reaction (HER) and chemical corrosion in the AZDs leads to local OH- concentration increasement and the formation of ZnxSOy(OH)z•nH2O (ZHS) by-products at the Zn/electrolyte interface, causing instability and irreversibility of the Zn-anodes. Here, a strategy is proposed to regulate OH- by introducing a bio-sourced/renewable polypeptide (ɛ-PL) as a pH regulator in electrolyte. The consumption of OH- species is evaluated through in vitro titration and cell in vivo in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy at a macroscopic and molecular level. The introduction of ɛ-PL is found to significantly suppress the formation of ZHS and associated side reactions, and reduce the local coordinated H2O of the Zn2+ solvation shell, widening electrochemical stable window and suppressing OH- generation during HER. As a result, the inclusion of ɛ-PL improves the cycle time of Zn/Zn symmetrical cells from 15 to 225 h and enhances the cycle time of aqueous Zn- I2 cells to 1650 h compared to those with pristine electrolytes. This work highlights the potential of kinetical OH- regulation for by-product and dendrite-free AZDs.

3.
Plant Biotechnol J ; 22(4): 960-969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38059318

RESUMEN

Inducible expression systems can overcome the trade-off between high-level transgene expression and its pleiotropic effects on plant growth. In addition, they can facilitate the expression of biochemical pathways that produce toxic metabolites. Although a few inducible expression systems for the control of transgene expression in plastids have been developed, they all depend on chemical inducers and/or nuclear transgenes. Here we report a temperature-inducible expression system for plastids that is based on the bacteriophage λ leftward and rightward promoters (pL/pR) and the temperature-sensitive repressor cI857. We show that the expression of green fluorescent protein (GFP) in plastids can be efficiently repressed by cI857 under normal growth conditions, and becomes induced over time upon exposure to elevated temperatures in a light-dependent process. We further demonstrate that by introducing into plastids an expression system based on the bacteriophage T7 RNA polymerase, the temperature-dependent accumulation of GFP increased further and was ~24 times higher than expression driven by the pL/pR promoter alone, reaching ~0.48% of the total soluble protein. In conclusion, our heat-inducible expression system provides a new tool for the external control of plastid (trans) gene expression that is cost-effective and does not depend on chemical inducers.


Asunto(s)
Calor , Plastidios , Regiones Promotoras Genéticas/genética , Transgenes/genética , Expresión Génica , Plastidios/genética , Plastidios/metabolismo
4.
Metab Eng ; 81: 100-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000548

RESUMEN

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Asunto(s)
Escherichia coli , Carmin de Índigo , Carmin de Índigo/metabolismo , Escherichia coli/metabolismo , Indoles/metabolismo , Oxigenasas de Función Mixta/metabolismo
5.
J Inherit Metab Dis ; 47(4): 731-745, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38356271

RESUMEN

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid ß-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.


Asunto(s)
Acil-CoA Deshidrogenasa , Errores Innatos del Metabolismo Lipídico , Lipidómica , Fosfolípidos , Triglicéridos , Humanos , Errores Innatos del Metabolismo Lipídico/sangre , Lipidómica/métodos , Niño , Masculino , Femenino , Triglicéridos/sangre , Fosfolípidos/sangre , Preescolar , Acil-CoA Deshidrogenasa/deficiencia , Lactante , Adolescente , Metabolismo de los Lípidos , Estudios de Casos y Controles , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Carnitina/sangre
6.
Nanotechnology ; 35(42)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897177

RESUMEN

Silicon in its nanoscale range offers a versatile scope in biomedical, photovoltaic, and solar cell applications. Due to its compatibility in integration with complex molecules owing to changes in charge density of as-fabricated Silicon Nanostructures (SiNSs) to realize label-free and real-time detection of certain biological and chemical species with certain biomolecules, it can be exploited as an indicator for ultra-sensitive and cost-effective biosensing applications in disease diagnosis. The morphological changes of SiNSs modified receptors (PNA, DNA, etc) have huge future scope in optimized sensitivity (due to conductance variations of SiNSs) of target biomolecules in health care applications. Further, due to the unique optical and electrical properties of SiNSs realized using the chemical etching technique, they can be used as an indicator for photovoltaic and solar cell applications. In this work, emphasis is given on different critical parameters that control the fabrication morphologies of SiNSs using metal-assisted chemical etching technique (MACE) and its corresponding fabrication mechanisms focusing on numerous applications in energy storage and health care domains. The evolution of MACE as a low-cost, easy process control, reproducibility, and convenient fabrication mechanism makes it a highly reliable-process friendly technique employed in photovoltaic, energy storage, and biomedical fields. Analysis of the experimental fabrication to obtain high aspect ratio SiNSs was carried out using iMAGEJ software to understand the role of surface-to-volume ratio in effective bacterial interfacing. Also, the role of silicon nanomaterials has been discussed as effective anti-bacterial surfaces due to the presence of silver investigated in the post-fabrication energy dispersive x-ray spectroscopy analysis using MACE.


Asunto(s)
Nanoestructuras , Silicio , Silicio/química , Nanoestructuras/química , Técnicas Biosensibles/métodos , Energía Solar , Humanos , Nanotecnología/métodos , Nanotecnología/economía
7.
Bioorg Med Chem ; 113: 117909, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288705

RESUMEN

The unique and complex structure of papain-like protease (PLpro) of the SARS-CoV-2 virus represents a difficult challenge for antiviral development, yet it offers a compelling validated target for effective therapy of COVID-19. The surge in scientific interest in inhibiting this cysteine protease emerged after its demonstrated connection to the cytokine storm in patients with COVID-19 disease. Furthermore, the development of new inhibitors against PLpro may also be beneficial for the treatment of respiratory infections caused by emerging coronavirus variants of concern. This review article provides a comprehensive overview of PLpro inhibitors, focusing on the structural framework of the known inhibitor GRL0617 and its analogs. We categorize PLpro inhibitors on the basis of their structures and binding site: Glu167 containing site, BL2 groove, Val70Ub site, and Cys111 containing catalytic site. We summarize and evaluate the majority of GRL0617-like inhibitors synthesized so far, highlighting their published biochemical parameters, which reflect their efficacy. Published research has shown that strategic modifications to GRL0617, such as decorating the naphthalene ring, extending the aromatic amino group or the orthomethyl group, can substantially decrease the IC50 from micromolar up to nanomolar concentration range. Some advantageous modifications significantly enhance inhibitory activity, paving the way for the development of new potent compounds. Our review places special emphasis on structures that involve direct modifications to the GRL0617 scaffold, including piperidine carboxamides and modified benzylmethylnaphthylethanamines (Jun9 scaffold). All these compounds are believed to inhibit the proteolytic, deubiquitination, and deISGylation activity of PLpro, biochemical processes linked to the severe progression of COVID-19. Finally, we summarize the development efforts for SARS-CoV-2 PLpro inhibitors, in detailed structure-activity relationships diagrams. This aims to inform and inspire future research in the search for potent antiviral agents against PLpro of current and emerging coronavirus threats.

8.
J Fluoresc ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141274

RESUMEN

This study investigates the synthesis and characterization of KSrVO4 phosphors doped with Er3+ ions using combustion synthesis route by using urea as a fuel. X-ray diffraction analysis confirmed the orthorhombic phase and nano-scale crystallite size of around 21 nm, while transmission electron microscopy showed spherical and rod-shaped morphologies. The studies detected upconversion emission spectra at 526, 542 and 643 nm, representing green and red transitions under 980 nm excitation. Downshifting emissions under 350 nm excitation revealed peaks at 492, 544 and 680 nm. The critical quenching concentration was 2.5 mol%, resulting from dipole-quadrupole interactions among dopant ions. The direct and indirect optical band gaps were calculated as 3.61 and 3.41 eV, respectively. The calculated chromaticity coordinates and color correlated temperature values of the phosphor surpassed 5000 K, suggesting its viability for cool LED applications. These findings emphasize KSrVO4:Er3+ as a promising greenish component in white LEDs and a potent upconverting luminescence material for bio-imaging and photovoltaics.

9.
J Fluoresc ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958905

RESUMEN

Pedalium Murex leaf extract was used in this study to create Nickel-doped Cerium oxide (Ni-CeO2) nanoparticles at 3 mol% and 5 mol% molar concentrations. The biosynthesized process was applied for the fabrication of Ni-CeO2 NPs. The X-ray diffraction method was used to identify their crystal structure. The XRD measurements showed that the Ni-CeO2 NPs crystallized into the face-centred cubic system. Fourier transform infrared spectral study was applied to explore the molecular vibrations and chemical bonding. The surface texture and chemical ingredients of Ni-CeO2 NPs were studied using field-emission scanning electron microscopy and energy-dispersive X-ray analysis. The EDX mapping spectra illustrate the uniform dispersal of Ce, Ni, and O atoms over the sample's surface. X-ray photoelectron spectroscopy (XPS) was conducted to confirm the chemical state of the Ni-CeO2 NPs. UV-Vis spectrum study was performed to ascertain the photon absorption, bandgap, and Urbach edge of Ni-CeO2 NPs. Photoluminescence (PL) research has been used to study the light-emitting characteristic of Ni-CeO2 NPs. The emissive intensity transition corresponding to Ni-CeO2 NPs was found to increase with the dopant level. The CIE 1931 chromaticity map was plotted to find the aptness of the samples for optical uses. The antifungal ability of Ni-CeO2 NPs was evaluated against the fungi candida albicans and candida krusein with the agar well-diffusion process. The fungicidal activity of the 3 mol% Ni doped CeO2 nanoparticles has shown a maximum zone of inhibition. The experimental findings illustrate the utility of Ni-CeO2 NPs for optical and antifungal applications.

10.
J Fluoresc ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619731

RESUMEN

Graphene quantum dots (GQDs) are known as suitable material to be applied in different fields such as photodynamic therapy (PDT). Herein, GQDs were synthesized by the pyrolysis method and then decorated with selenium (Se). Afterward, they were combined with methylene blue (MB) to increase singlet oxygen generation as well as to apply them more effectively in the PDT method. Furthermore, GQDs were investigated by transmission electron microscope (TEM), photoluminescence spectrum (PL), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), reactive oxygen species (ROS) measurement, and cytotoxicity measurement. GQDs showed no dependence on the excitation wavelength. The result of ROS measurement proves that the combination of GQD-Se and MB increases singlet oxygen production. Moreover, afterglow measurement approved the beneficial effect of GQD-Se on even deep and near skin tumor treatment. Cytotoxicity measurements under dark conditions, cell viability, and the side effects on human cells were determined by (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay. Our findings show that under dark conditions, even high concentrations of nanoparticles have no significant effect on cell viability. These findings and the high biocompatibility of GQDs indicate the effective application of GQD-Se-MB in PDT.

11.
J Fluoresc ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733436

RESUMEN

We studied steady-state and time-resolved photoluminescence of Eu doped BaAl2O4 phosphor. The undoped BaAl2O4 sample shows a dominant blue emission band at ~ 428 nm and two secondary maxima at ~ 405 and 456 nm due to F-centre and aggregate defects such as F2 -centre. The samples after doping of Eu at 1-5% show additional emission bands at ~ 485 and 518 nm due to Eu2+ centre and a red emission band at ~ 657 nm is attributed to Eu3+ centre. The sample doped with 2% of Eu shows anomalous emission having the dominant peak at ~ 494 nm. The average luminescence lifetime of the emission band at ~ 428 nm in the undoped sample was estimated to be (3.29 ± 0.91) ns. The average luminescence lifetime of this emission band after doping of Eu was found to increase by 102 orders of magnitude. The intensity of the 428 nm blue emission band was found to quench after doping of Eu beyond 3%. The concentration quenching effect was attributed to dipole-quadrupole interaction. Further, a non-radiative fluorescence energy transfer mechanism from an extrinsic Eu2+ centre to an intrinsic F-centre is proposed to describe the luminescence dynamics of the samples.

12.
J Fluoresc ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172326

RESUMEN

A fixed Nd3+ and varied Yb3+ ion concentration were incorporated in a Zinc-Silicate (SZNYX) composite solution using ex-situ sol-gel solution to fabricate a novel thin film (TF) on Si (100)-substrate. The upconversion luminescence (UCL) spectra of the thin films were measured under 980 nm laser excitation, with the most optimized result for Yb3+ ion concentration of 1.5 mol%. Additionally, a 2-D photoluminescence (PL) confocal mapping of the SZNY15-TF material confirmed uniform PL distribution throughout the space under the same excitation wavelength. Structural characterization via XRD revealed the tetragonal Zn2SiO4 nano-crystalline nature of the film at three distinct annealing temperatures. Morphological characterization using the Field-emission scanning electron Microscope (FESEM) coupled with energy dispersion spectrometer (EDS) affirmed the nanoflower structure and the purity of doping purity in the samples, respectively. These findings collectively confirm the promising UCL properties of the SZNYX-TF samples, suggesting potential applications in photonic.

13.
J Cutan Pathol ; 51(4): 317-326, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158735

RESUMEN

BACKGROUND: In dermatomyositis (DM), myositis-specific and myositis-associated antibodies have been correlated with clinical features. It is unknown if histopathologic findings in lesional skin biopsies correlate with serologic subtypes of DM. METHODS: A retrospective chart review of patients with DM was performed. Patients with myositis antibodies and DM lesional skin biopsies were included in the study. Skin biopsies were reviewed by blinded dermatopathologists for 20 histopathologic features. RESULTS: There was a statistically significant (p < 0.05) association between anti-PL-7 serology and decreased degree of vacuolar degeneration, necrotic keratinocytes, and thickening of the epidermal basement membrane. Anti-aminoacyl tRNA synthetase (anti-ARS) antibodies had the same significant negative association with degree of vacuolar degeneration, necrotic keratinocytes, and thickening of the epidermal basement membrane. A similar pattern was seen with an anti-cytoplasmic serology; where there was a significant association with an increased degree of vacuolar degeneration and necrotic keratinocytes, and a nonsignificant trend of minimally thickened epidermal basement membrane. There was a statistically significant association between anti-Ro/SSA serology and increased degree of vacuolar degeneration. Anti-TIF1-γ serology was significantly associated with the increased presence of necrotic keratinocytes and pigment incontinence, and displayed a pattern of increased neutrophils. There was a significant association between anti-Mi-2 antibodies and pigment incontinence, as well as between myositis-specific antibodies and pigment incontinence. A statistically significant positive association was found between nuclear antibodies and degree of vacuolar degeneration, thickened epidermal basement membrane, pigment incontinence, and epidermal atrophy. CONCLUSION: In patients with DM, some specific serotypes, including anti-PL-7, anti-Ro/SSA, anti-Mi-2, and anti-TIF1-γ, may have characteristic histopathologic features.


Asunto(s)
Dermatomiositis , Enfermedades Pulmonares Intersticiales , Miositis , Humanos , Dermatomiositis/complicaciones , Estudios Retrospectivos , Miositis/complicaciones , Autoanticuerpos
14.
J Biopharm Stat ; : 1-12, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39306756

RESUMEN

Bioassays are regulated, analytical methods used to ensure proper activity (potency) of biological products at release and during long-term storage. Potency is commonly reported on a relative basis by comparing and calibrating a concentration-response curve from the test material to that of a reference standard material. The relative potency approach depends on an assumption that the two concentration-response curves exhibit similar (equivalent) shapes, except for a potency shift. In certain circumstances, however, biological factors preclude the similarity assumption, and the traditional approach becomes unworkable. The antibody-mediated cytotoxicity assay is one example where the similarity assumption does not always hold. Other examples also arise in the fields of toxicology and pharmacology. In this work, we present a non-constant mean relative potency approach which averages the relative potency across a common range of the concentration-response curves. The proposed method captures the changing nature of the relative potency into a summary statistic that can be reported for batch calibration and quality control purposes. We provide inferential methods for this statistic and summarize the results of a simulation comparing these methods across a number of non-constant relative potency scenarios and assay conditions.

15.
BMC Public Health ; 24(1): 1738, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951834

RESUMEN

Research indicates that COVID-19 has had adverse effects on the mental health of adolescents, exacerbating their negative psychological states. The purpose of this study is to investigate the impact of Physical Literacy (PL) on Negative Mental State caused by COVID-19 (NMSC) and identify potential factors related to NMSC and PL in Chinese adolescents. This cross-sectional study involved a total of 729 Chinese high school students with an average age of 16.2 ± 1.1 years. Participants' demographic data, PL data, and NMSC data were collected. PL and NMSC were measured using the self-reported Portuguese Physical Literacy Assessment Questionnaire (PPLA-Q), the Stress and Anxiety to Viral Epidemics-6 (SAVE-6), and the Fear of COVID-19 Scale (FCV-19). Adolescents in the current study demonstrated higher levels of NMSC and lower PL, with average scores of 3.45 and 2.26, respectively (on a scale of 5). Through multiple linear regression analysis, Motivation (MO), Confidence (CO), Emotional Regulation (ER), and Physical Regulation (PR) were identified as factors influencing NMSC in adolescents. The study findings contribute to providing guidance for actions aimed at alleviating NMSC among adolescents.


Asunto(s)
COVID-19 , Resiliencia Psicológica , Adolescente , Femenino , Humanos , Masculino , China/epidemiología , COVID-19/psicología , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Pueblos del Este de Asia , Alfabetización en Salud/estadística & datos numéricos , Salud Mental , Encuestas y Cuestionarios
16.
Mar Drugs ; 22(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39330274

RESUMEN

Two new C23-steroids derivatives, cyclocitrinoic acid A (1) and cyclocitrinoic acid B (2), and a new isocoumarin metabolite, (3R,4S)-6,8-dihydroxy-3,4,5-trimethyl-7-carboxamidelisocoumarin (10), together with 12 known compounds (3-9, 11-15) were isolated from the mangrove-sediment fungus Penicillium sp. SCSIO 41429. The structures of the new compounds were comprehensively characterized by 1D and 2D NMR, HRESIMS and ECD calculation. All isolates were evaluated for pancreatic lipase (PL) inhibitory and antioxidant activities. The biological evaluation results revealed that compounds 2, 14 and 15 displayed weak or moderate inhibition against PL, with IC50 values of 32.77, 5.15 and 2.42 µM, respectively. In addition, compounds 7, 12 and 13 showed radical scavenging activities against DPPH, with IC50 values of 64.70, 48.13, and 75.54 µM, respectively. In addition, molecular docking results indicated that these compounds had potential for PL inhibitory and antioxidant activities, which provided screening candidates for antioxidants and a reduction in obesity.


Asunto(s)
Antioxidantes , Sedimentos Geológicos , Isocumarinas , Lipasa , Simulación del Acoplamiento Molecular , Penicillium , Penicillium/metabolismo , Penicillium/química , Isocumarinas/farmacología , Isocumarinas/química , Isocumarinas/aislamiento & purificación , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Sedimentos Geológicos/microbiología , Concentración 50 Inhibidora , Rhizophoraceae/microbiología , Estructura Molecular
17.
Pharm Stat ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015015

RESUMEN

In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.

18.
Nano Lett ; 23(23): 10848-10855, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37967849

RESUMEN

In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS2 covering a gold disk. We demonstrate that the nonresonant excitation of the gold disk in the high absorption regime efficiently generates hot carriers via localized surface plasmon excitation, which n-dope the monolayer WS2 and enhance the photoluminescence emission by regulating the multiexciton population and stabilizing the neutral exciton emission. The results are relevant to the further development of nanotransistors in photonic circuits and optoelectronic applications.

19.
Nord J Psychiatry ; 78(1): 71-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37755235

RESUMEN

OBJECTIVES: The traditional view on psychiatric disorders as categorical and distinct is being challenged by perspectives emphasizing the relevance of dimensional and transdiagnostic assessment. However, most diagnostic instruments are based on a categorical view with a threshold-approach to disease classification. METHODS: We here describe algorithms for dimensionalizing the psychopathological ratings of the widely used diagnostic interview for children and adolescents, the Kiddie-Schedule for Affective Disorders and Schizophrenia - Present and Lifetime Version (K-SADS-PL). We further evaluate the criterion-related construct validity of the dimensionalized attention-deficit/hyperactivity disorder (ADHD) scales using Rasch models in a sample of 590 children (mean age 10.29 (.36), 49% girls). RESULTS: The algorithms generate scores of current symptom load, i.e., the sum of clinician-rated symptoms within each disorder assessed with the interview. We found support for counting symptoms of inattention and hyperactivity/impulsivity, respectively, but not for a single combined ADHD scale. CONCLUSIONS: The algorithms constitute an initial step in creating a framework for clinician-rated dimensional analyses of symptoms derived from the K-SADS-PL, but future studies are needed to further evaluate the construct validity of the remaining scales and the reliability and clinical utility of the method. We believe that our proposed algorithms offer a novel method of dimensional psychopathological assessment, which can be applied in multiple branches of child and adolescent psychiatry.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Femenino , Humanos , Adolescente , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Reproducibilidad de los Resultados , Psicopatología , Escalas de Valoración Psiquiátrica , Psiquiatría del Adolescente
20.
J Environ Manage ; 354: 120246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359624

RESUMEN

Accurate and reliable estimation of Reference Evapotranspiration (ETo) is crucial for water resources management, hydrological processes, and agricultural production. The FAO-56 Penman-Monteith (FAO-56PM) approach is recommended as the standard model for ETo estimation; nevertheless, the absence of comprehensive meteorological variables at many global locations frequently restricts its implementation. This study compares shallow learning (SL) and deep learning (DL) models for estimating daily ETo against the FAO-56PM approach based on various statistic metrics and graphic tool over a coastal Red Sea region, Sudan. A novel approach of the SL model, the Catboost Regressor (CBR) and three DL models: 1D-Convolutional Neural Networks (1D-CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were adopted and coupled with a semi-supervised pseudo-labeling (PL) technique. Six scenarios were developed regarding different input combinations of meteorological variables such as air temperature (Tmin, Tmax, and Tmean), wind speed (U2), relative humidity (RH), sunshine hours duration (SSH), net radiation (Rn), and saturation vapor pressure deficit (es-ea). The results showed that the PL technique reduced the systematic error of SL and DL models during training for all the scenarios. The input combination of Tmin, Tmax, Tmean, and RH reflected higher performance than other combinations for all employed models. The CBR-PL model demonstrated good generalization abilities to predict daily ETo and was the overall superior model in the testing phase according to prediction accuracy, stability analysis, and less computation cost compared to DL models. Thus, the relatively simple CBR-PL model is highly recommended as a promising tool for predicting daily ETo in coastal regions worldwide which have limited climate data.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Clima , Viento , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA