Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(2): 122-137, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37774345

RESUMEN

Clinicians have long been interested in understanding the molecular basis of diabetic kidney disease (DKD)and its potential treatment targets. Its pathophysiology involves protein phosphorylation, one of the most recognizable post-transcriptional modifications, that can take part in many cellular functions and control different metabolic processes. In order to recognize the molecular and protein changes of DKD kidney, this study applied Tandem liquid chromatography-mass spectrometry (LC-MS/MS) and Next-Generation Sequencing, along with Tandem Mass Tags (TMT) labeling techniques to evaluate the mRNA, protein and modified phosphorylation sites between DKD mice and model ones. Based on Gene Ontology (GO) and KEGG pathway analyses of transcriptome and proteome, The molecular changes of DKD include accumulation of extracellular matrix, abnormally activated inflammatory microenvironment, oxidative stress and lipid metabolism disorders, leading to glomerulosclerosis and tubulointerstitial fibrosis. Oxidative stress has been emphasized as an important factor in DKD and progression to ESKD, which is directly related to podocyte injury, albuminuria and renal tubulointerstitial fibrosis. A histological study of phosphorylation further revealed that kinases were crucial. Three groups of studies have found that RAS signaling pathway, RAP1 signaling pathway, AMPK signaling pathway, PPAR signaling pathway and HIF-1 signaling pathway were crucial for the pathogenesis of DKD. Through this approach, it was discovered that targeting specific molecules, proteins, kinases and critical pathways could be a promising approach for treating DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Cromatografía Liquida , Multiómica , Espectrometría de Masas en Tándem , Fibrosis
2.
J Cell Physiol ; 239(2): e31173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214103

RESUMEN

Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.


Asunto(s)
Adipogénesis , Insulina , Transducción de Señal , Animales , Ratones , Células 3T3-L1 , Adipogénesis/genética , Adiponectina/genética , Adiponectina/metabolismo , Diferenciación Celular , Regulación hacia Abajo , Glucosa/metabolismo , Insulina/metabolismo , Lípidos , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , PPAR gamma/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
3.
J Transl Med ; 22(1): 86, 2024 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-38246999

RESUMEN

BACKGROUND: Obesity, a condition associated with the development of widespread cardiovascular disease, metabolic disorders, and other health complications, has emerged as a significant global health issue. Oleanolic acid (OA), a pentacyclic triterpenoid compound that is widely distributed in various natural plants, has demonstrated potential anti-inflammatory and anti-atherosclerotic properties. However, the mechanism by which OA fights obesity has not been well studied. METHOD: Network pharmacology was utilized to search for potential targets and pathways of OA against obesity. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of OA with core targets, and an animal model of obesity induced by high-fat eating was then employed to confirm the most central of these targets. RESULTS: The network pharmacology study thoroughly examined 42 important OA targets for the treatment of obesity. The key biological processes (BP), cellular components (CC), and molecular functions (MF) of OA for anti-obesity were identified using GO enrichment analysis, including intracellular receptor signaling, intracellular steroid hormone receptor signaling, chromatin, nucleoplasm, receptor complex, endoplasmic reticulum membrane, and RNA polymerase II transcription Factor Activity. The KEGG/DAVID database enrichment study found that metabolic pathways, PPAR signaling pathways, cancer pathways/PPAR signaling pathways, insulin resistance, and ovarian steroidogenesis all play essential roles in the treatment of obesity and OA. The protein-protein interaction (PPI) network was used to screen nine main targets: PPARG, PPARA, MAPK3, NR3C1, PTGS2, CYP19A1, CNR1, HSD11B1, and AGTR1. Using molecular docking technology, the possible binding mechanism and degree of binding between OA and each important target were validated, demonstrating that OA has a good binding potential with each target. The molecular dynamics simulation's Root Mean Square Deviation (RMSD), and Radius of Gyration (Rg) further demonstrated that OA has strong binding stability with each target. Additional animal studies confirmed the significance of the core target PPARG and the core pathway PPAR signaling pathway in OA anti-obesity. CONCLUSION: Overall, our study utilized a multifaceted approach to investigate the value and mechanisms of OA in treating obesity, thereby providing a novel foundation for the identification and development of natural drug treatments.


Asunto(s)
Enfermedades Cardiovasculares , Ácido Oleanólico , Animales , Simulación del Acoplamiento Molecular , Farmacología en Red , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , PPAR gamma
4.
J Transl Med ; 22(1): 701, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075482

RESUMEN

BACKGROUND: The relationship between Helicobacter pylori (H. pylori) infection and metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increased clinical attention. However, most of those current studies involve cross-sectional studies and meta-analyses, and experimental mechanistic exploration still needs to be improved. This study aimed to investigate the mechanisms by which H. pylori impacts MASLD. METHODS: We established two H. pylori-infected (Cag A positive and Cag A negative) mouse models with 16 weeks of chow diet (CD) or high-fat diet (HFD) feeding. Body weight, liver triglyceride, blood glucose, serum biochemical parameters, inflammatory factors, and insulin resistance were measured, and histological analysis of liver tissues was performed. Mouse livers were subjected to transcriptome RNA sequencing analysis. RESULTS: Although H. pylori infection could not significantly affect serum inflammatory factor levels and serum biochemical parameters in mice, serum insulin and homeostatic model assessment for insulin resistance levels increased in CD mode. In contrast, H. pylori Cag A + infection significantly aggravated hepatic pathological steatosis induced by HFD and elevated serum inflammatory factors and lipid metabolism parameters. Hepatic transcriptomic analysis in the CD groups revealed 767 differentially expressed genes (DEGs) in the H. pylori Cag A + infected group and 1473 DEGs in the H. pylori Cag A- infected group, and the "nonalcoholic fatty liver disease" pathway was significantly enriched in KEGG analysis. There were 578 DEGs in H. pylori Cag A + infection combined with the HFD feeding group and 820 DEGs in the H. pylori Cag A- infected group. DEGs in the HFD groups were significantly enriched in "fatty acid degradation" and "PPAR pathway." Exploring the effect of different Cag A statuses on mouse liver revealed that fatty acid binding protein 5 was differentially expressed in Cag A- H. pylori. DEG enrichment pathways were concentrated in the "PPAR pathway" and "fatty acid degradation." CONCLUSIONS: Clinicians are expected to comprehend the impact of H. pylori on MASLD and better understand and manage MASLD. H. pylori infection may exacerbate the development of MASLD by regulating hepatic lipid metabolism, and the H. pylori virulence factor Cag A plays a vital role in this regulation.


Asunto(s)
Hígado Graso , Infecciones por Helicobacter , Helicobacter pylori , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Transcriptoma , Animales , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/metabolismo , Metabolismo de los Lípidos/genética , Transcriptoma/genética , Hígado Graso/complicaciones , Hígado Graso/microbiología , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Masculino , Dieta Alta en Grasa , Hígado/metabolismo , Hígado/patología , Resistencia a la Insulina , Perfilación de la Expresión Génica , Ratones , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/genética , Redes y Vías Metabólicas/genética
5.
Fish Shellfish Immunol ; 149: 109573, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636742

RESUMEN

This research elucidates the potential of Lycium barbarum residue (LBR), a by-product rich in bioactive substances, as a dietary supplement in aquaculture, especially for herbivorous fish like grass carp. In a detailed 120-day feeding trial, the impacts of varying LBR levels on juvenile grass carp were assessed, focusing on growth performance, survival rate, biochemical markers, and liver health. The study identified a 6% inclusion rate of LBR as optimal for enhancing survival and growth while mitigating hepatic lipid accumulation. Composition analysis of this diet revealed high concentrations of polysaccharides and flavonoids. Notably, the intake of LBR was found to enhance the antioxidant and immune-related enzymatic activities in the liver. Furthermore, it contributed to a reduction in hepatic fat deposition by decreasing the levels of triglycerides (TG) and total cholesterol (T-CHO) both in the liver and serum. Transcriptomic analysis of the liver highlighted LBR's substantial influence on lipid metabolism pathways, including the PPAR signaling pathway, primary bile acid biosynthesis, cholesterol metabolism, bile secretion, fat digestion and absorption, fatty acid degradation and fatty acid biosynthesis. Further, the expression level of genes pinpointed significant downregulation of fasn and dgat2, alongside upregulation of genes like pparda, cpt1b, cpt1ab and abca1b, in response to LBR supplementation. Overall, the findings present LBR as a promising enhancer of growth and survival in grass carp, with significant benefits in promoting fat metabolism and liver health, offering valuable insights for aquacultural nutrition strategies.


Asunto(s)
Alimentación Animal , Carpas , Dieta , Suplementos Dietéticos , Hígado , Animales , Carpas/crecimiento & desarrollo , Carpas/inmunología , Alimentación Animal/análisis , Hígado/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Metabolismo de los Lípidos/efectos de los fármacos , Lycium/química
6.
Fish Shellfish Immunol ; 145: 109302, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128680

RESUMEN

Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1ß, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid ß-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid ß-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid ß-oxidative metabolism.


Asunto(s)
Cíclidos , Tilapia , Animales , Tilapia/metabolismo , Cíclidos/metabolismo , Dieta Alta en Grasa , Resveratrol/metabolismo , Metabolismo de los Lípidos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/farmacología , Intestinos , Transducción de Señal , Ácidos Grasos/metabolismo , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Dieta , Suplementos Dietéticos , Alimentación Animal/análisis
7.
Environ Sci Technol ; 58(37): 16258-16268, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39146316

RESUMEN

Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 µg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.


Asunto(s)
Homeostasis , Larva , PPAR alfa , Pez Cebra , Animales , Larva/efectos de los fármacos , Larva/metabolismo , PPAR alfa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Fluorocarburos , Ácidos Sulfónicos
8.
Biochem Genet ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379039

RESUMEN

Psoriasis is a kind of severe immune-mediated systemic skin disorder, becoming a worldwide public health concern. Daturataturin A (DTA), a withanolide compound, exerts excellent anti-inflammatory and anti-proliferative properties. The objective of this study is to elucidate the effect of DTA on psoriasis and its potential mechanism. We established psoriasis-like keratinocytes model by stimulating HaCaT cells with M5 cocktail cytokines including Interleukin (IL)-17A, IL-22, oncostatin M, IL-1α, and tumor necrosis factor-α (TNF-α), followed by intervention with DTA. The potential effects and mechanisms of DTA on psoriasis were evaluated in vitro. DTA was found to be able to inhibit hyperproliferation, promote apoptosis, decrease the release of pro-inflammatory cytokines, downregulate keratin expression, and improve lipid metabolism via regulating the peroxisome proliferator-activated receptor (PPAR) signaling pathway by M5 cocktail cytokines stimulation in HaCaT cells. DTA ameliorated lipid metabolism of psoriasis and exerted the potential anti-psoriasis effects by regulating PPAR pathway in vitro, suggesting that DTA may act as a new therapeutic agent for psoriasis.

9.
Ecotoxicol Environ Saf ; 285: 117076, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39303634

RESUMEN

Fish exhibit varying responses to polystyrene microplastics (MPs) depending on particle size. Previous studies suggested that microorganisms adhering to the surface of MPs can induce toxic effects. In this study, Tilapia were exposed to MPs of control (group A), 75 nm (B), 7.5 µm (C), 750 µm (D), as well as combinations of all sizes (E) and 75 nm MPs with Chlorella vulgaris addition (F) for 7, 10 and 14 days. Histopathological changes in liver of tilapia were assessed using enzyme activities, transcriptomics and proteomics. The results showed that in groups combined MPs of different particle sizes and those supplemented with chlorella, MPs were localized on the surface of goblet cells, leading to vacuoles, constricted hepatic sinuses and nuclei displacement. Exposure to 7.5 and 750 µm MPs significantly increased the contents of fatty acid synthase (FAS), adenosine triphosphate (ATP), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), total cholesterol (TC), total triglyceride (TG) contents at 7 and 10 days. In particular, cytochrome p450 1a1 (EROD), reactive oxygen species (ROS) and superoxide dismutase (SOD) were markedly elevated following exposure to MPs. Apoptotic markers caspase-3, and inflammatory markers, including tumor necrosis factor α (TNF-α) and interleukin-1ß (IL-1ß), had a similar upward trend in comparisons of group C vs A at 7 d, group D vs A at 14 d. The peroxisome proliferator activated receptor (PPAR) signaling pathway, spliceosome, was highly enriched during the 7-day exposure of medium sized MPs, while largest MPs in the comparison of group D vs A at 14 d activated pathways such as phagosome, apoptosis, salmonella infection. Transcriptomic analysis revealed that after 14 days, the kyoto encyclopedia of genes and genomes (KEGG) pathways associated with protein processing in endoplasmic reticulum and the PPAR signaling has been significantly enriched in the Chlorella-supplemented group, which was further confirmed via the proteomic analysis. Overall, the findings highlight the size-dependent effects of MPs on histopathological changes, gene and protein expression in the liver of tilapia, and C. vulgaris effectively attenuated liver damages, likely through modulation of endoplasmic reticulum protein processing and PPAR signaling pathways.


Asunto(s)
Hígado , Microplásticos , Poliestirenos , Proteómica , Tilapia , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Chlorella vulgaris/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Chlorella/efectos de los fármacos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo
10.
Ecotoxicol Environ Saf ; 284: 117004, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39270416

RESUMEN

With the increase of cadmium content in the environment, the losses caused by cadmium-induced intestinal diseases to animal husbandry are increasing year by year. However, most of the on-going research activities focus on zoonotic diseases rather than exploring the mechanisms of animal disease occurrence from an anthropogenic environmental perspective. In this study, stressed Hu sheep under cadmium environmental exposure were selected to explore the mechanism of inflammatory bowel disease development. 16 s, untargeted metabolomics and transcriptomic multiomics were used to analyze the changes of their intestinal tract and intestinal contents. The results showed that the beneficial microorganisms (s_Ruminococcus_sp) in the Cd group were significantly decreased and the potentially harmful microorganisms were significantly enriched, and the changes of these microorganisms affected the changes of metabolites (caprylic acid) to a certain extent, resulting in a decrease in fatty acids in the intestine. Due to the combined effect of cadmium ion and fatty acid reduction, the PPAR signaling pathway was inhibited, and the fatty acid transport and binding were further reduced, causing very serious damage to the intestine. We revealed for the first time the mechanism of intestinal injury in Hu sheeps under cadmium environmental exposure and provided new prevention and treatment methods of intestinal diseases under the environmental exposure to trace metals.


Asunto(s)
Cadmio , Colon , Intestino Delgado , Receptores Activados del Proliferador del Peroxisoma , Transducción de Señal , Animales , Cadmio/toxicidad , Transducción de Señal/efectos de los fármacos , Ovinos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Inflamación/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Enfermedades de las Ovejas/inducido químicamente , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos
11.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126116

RESUMEN

Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed to elucidate the chemicals and working mechanisms of PS for HUA. UPLC-QE-Orbitrap-MS was applied to identify the main components of PS in vitro and in vivo. RNA sequencing (RNA-seq) was conducted to explore the gene expression profile, and the genes involved were further confirmed by real-time quantitative PCR (RT-qPCR). A total of 39 components were identified from PS, and 13 of them were detected in the rat serum after treating the rat with PS. The kidney tissue injury and serum uric acid (UA), xanthine oxidase (XOD), and cytokine levels were reversed by PS. Meanwhile, renal urate anion transporter 1 (Urat1) and glucose transporter 9 (Glut9) levels were reversed with PS treatment. RNA-seq analysis showed that the PPAR signaling pathway; glycine, serine, and threonine metabolism signaling pathway; and fatty acid metabolism signaling pathway were significantly modified by PS treatment. Further, the gene expression of Slc7a8, Pck1, Mgll, and Bhmt were significantly elevated, and Fkbp5 was downregulated, consistent with RNA-seq results. The PPAR signaling pathway involved Pparα, Pparγ, Lpl, Plin5, Atgl, and Hsl were elevated by PS treatment. URAT1 and PPARα proteins levels were confirmed by Western blotting. In conclusion, this study elucidates the chemical profile and working mechanisms of PS for prevention and therapy of HUA and provides a promising traditional Chinese medicine agency for HUA prophylaxis.


Asunto(s)
Hiperuricemia , Ácido Oxónico , Plantago , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Animales , Ratas , Ácido Oxónico/efectos adversos , Masculino , Plantago/química , Ácido Úrico/sangre , Extractos Vegetales/farmacología , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Xantina Oxidasa/metabolismo
12.
Proteomics ; 23(18): e2200330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271885

RESUMEN

Cardiovascular diseases (CVDs) are among the most morbid and deadly types of diseases worldwide, while the existing therapeutic approaches all have their limitations. Mouse heart undergoes a very complex postnatal developmental process, including the 1-week window in which cardiomyocytes (CMs) maintain relatively high cell activity. The underlying mechanism provides an attractive direction for CVDs treatment. Herein, we collected ventricular tissues from mice of different ages from E18.5D to P8W and performed iTRAQ-based quantitative proteomics to characterize the atlas of cardiac development. A total of 3422 proteins were quantified at all selected time points, revealing critical proteomic changes related to cardiac developmental events such as the metabolic transition from glycolysis to beta-oxidation. A cluster of significantly dysregulated proteins containing proteins that have already been reported to be associated with cardiac regeneration (Erbb2, Agrin, and Hmgb) was identified. Meanwhile, the peroxisome proliferator-activated receptor (PPAR) signaling pathway (Cpt1α, Hmgcs2, Plin2, and Fabp4) was also found specifically enriched. We further revealed that bezafibrate, a pan-activator of PPAR signaling pathway markedly enhanced H9C2 cardiomyocyte activity via enhancing Cpt1α expression. This work provides new hint that activation of PPAR signaling pathway could potentially be a therapeutic strategy for the treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales Recién Nacidos , Proteómica , Transducción de Señal , Enfermedades Cardiovasculares/metabolismo
13.
J Lipid Res ; 64(3): 100326, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592657

RESUMEN

Compared with other species, freshwater fish are more capable of synthesizing DHA via same biosynthetic pathways. Freshwater fish have a "Sprecher" pathway to biosynthesize DHA in a peroxisome-dependent manner. Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh) is involved in the hydration and dehydrogenation reactions of fatty acid ß-oxidation in peroxisomes. However, the role of Ehhadh in the synthesis of DHA in freshwater fish remains largely unclear. In this study, the knockout of Ehhadh significantly inhibited DHA synthesis in zebrafish. Liver transcriptome analysis showed that Ehhadh deletion significantly inhibited SREBF and PPAR signaling pathways and decreased the expression of PUFA synthesis-related genes. Our results from the analysis of transgenic zebrafish (Tg:Ehhadh) showed that Ehhadh overexpression significantly increased the DHA content in the liver and significantly upregulated the expression of genes related to PUFA synthesis. In addition, the DHA content in the liver of Tg:Ehhadh fed with linseed oil was significantly higher than that of wildtype, but the expression of PUFA synthesis-related genes fads2 and elovl2 were significantly lower, indicating that Ehhadh had a direct effect on DHA synthesis. In conclusion, our results showed that Ehhadh was essential for DHA synthesis in the "Sprecher" pathway, and Ehhadh overexpression could promote DHA synthesis. This study provides insight into the role of Ehhadh in freshwater fish.


Asunto(s)
Enoil-CoA Hidratasa , Pez Cebra , Animales , Enzima Bifuncional Peroxisomal/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/farmacología , Peroxisomas/metabolismo , Hígado/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/farmacología , Acetiltransferasas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Physiol Genomics ; 55(3): 101-112, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645669

RESUMEN

Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer, though mechanisms underlying these effects are incompletely understood. Human organoids are an ideal system to study genomic and epigenomic host-environment interactions. We use human colonic organoids to profile ASA responses on genome-wide gene expression and chromatin accessibility. Human colonic organoids from one individual were cultured and treated in triplicate with 3 mM ASA or vehicle control (DMSO) for 24 h. Gene expression and chromatin accessibility were measured using RNA- and ATAC-sequencing, respectively. Differentially expressed genes were analyzed using DESeq2. Top genes were validated by qPCR. Gene set enrichment was performed by SetRank. Differentially accessible peaks were analyzed using DiffBind and edgeR. Peak annotation and differential transcription factor motifs were determined by HOMER and diffTF. The results showed robust transcriptional responses to ASA with significant enrichment for fatty acid oxidation and peroxisome proliferator-activated receptor (PPAR) signaling that were validated in independent organoid lines. A large number of differentially accessible chromatin regions were found in response to ASA with significant enrichment for Fos, Jun, and Hnf transcription factor motifs. Integrated analysis of epigenomic and genomic treatment responses highlighted gene regions that could mediate ASA's specific effects in the colon including those involved in chemoprotection and/or toxicity. Assessment of chromatin accessibility and transcriptional responses to ASA yielded new observations about genome-wide effects in the colon facilitated by application of human colonic organoids. This framework can be applied to study colonic ASA responses between individuals and populations in future studies.


Asunto(s)
Aspirina , Epigenómica , Humanos , Aspirina/metabolismo , Colon/metabolismo , Cromatina/metabolismo , Factores de Transcripción/metabolismo , Organoides
15.
Physiol Genomics ; 55(9): 368-380, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486084

RESUMEN

Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.


Asunto(s)
Hibernación , Resistencia a la Insulina , Ursidae , Animales , Ursidae/genética , Ursidae/metabolismo , Hibernación/genética , Estaciones del Año , Glucosa/metabolismo , Resistencia a la Insulina/genética , Expresión Génica
16.
Artículo en Inglés | MEDLINE | ID: mdl-38040523

RESUMEN

BACKGROUND: Obesity is a common public health issue and is currently deemed a disease. Research has shown that the risk of gallstones in individuals with obesity is elevated. This study aimed to explore the bile proteomics differences between cholelithiasis patients with obesity and normal body weight. METHODS: Bile samples from 20 patients (10 with obesity and 10 with normal body weight) who underwent laparoscopic cholecystectomy at our center were subjected to tandem mass tag labeling (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by further bioinformatic analysis. RESULTS: Among the differentially-expressed proteins, 23 were upregulated and 67 were downregulated. Bioinformatic analysis indicated that these differentially-expressed proteins were mainly involved in cell development, inflammatory responses, glycerolipid metabolic processes, and protein activation cascades. In addition, the activity of the peroxisome proliferator-activated receptor (PPAR, a subfamily of nuclear receptors) signaling pathway was decreased in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Two downregulated proteins in the PPAR signaling pathway, APOA-I and APOA-II, were confirmed using enzyme-linked immunosorbent assay. CONCLUSIONS: The PPAR signaling pathway may play a crucial role in the development of cholelithiasis among patients with obesity. Furthermore, biliary proteomics profiling of gallstones patients with obesity is revealed, providing a reference for future research.

17.
Exp Eye Res ; 219: 109056, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367248

RESUMEN

Our previous study demonstrated that parental uveitis in a susceptible population can cause hair loss and increase the susceptibility to experimental autoimmune uveitis (EAU) in offspring. However, it is unclear whether parental uveitis affects the development of offspring in an EAU-moderate-susceptible population. Herein, moderate-susceptible C57BL/6J mice were immunized with inter-photoreceptor retinoid binding protein (IRBP) 651-670 to develop EAU and were kept together for mating. Gross examination and histopathological changes of the offspring gestated with parental uveitis were observed to evaluate the impact of parental uveitis on the development of the offspring. Differentially expressed genes (DEGs) were screened by RNA sequencing in the affected skin and eyeball of the offspring on postnatal day 27. Adult offspring were injected 75 µg IRBP651-670 to evaluate their susceptibility to EAU. Gross examination in the offspring revealed hair loss on postnatal days 11-31. Histopathological observation showed increased melanin granules and hair follicles of skin in the affected offspring with hair loss. Gene Ontology (GO) analysis in the skin revealed differential expression of genes involved in the mitotic cell cycle, response to endogenous stimulus, hair follicle development, and hair cycle. The DEGs in the skin were predominately associated with the cell cycle and peroxisome proliferator-activated receptor (PPAR) signaling pathway. The GO enrichment analysis in the eyeball showed differential expression of genes involved in the nervous system development, camera-type eye photoreceptor cell differentiation, neuron projection morphogenesis, axon development, and calcium-induced calcium release activity; enriched pathways included the circadian entrainment and glutamatergic synapses. No increased susceptibility to EAU in offspring gestated from parental remitting EAU was observed at a low-dose 75 µg IRBP induction. These results suggested that parental uveitis in a moderate-susceptible population could affect the skin development and DEG profiles of skin and eyeball related to the response to endogenous stimulus, the PPAR signaling pathway, and glutamatergic synapse, which provides the molecular evidence to explain the influence of parental uveitis on offspring development.


Asunto(s)
Enfermedades Autoinmunes , Uveítis , Alopecia , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteínas del Ojo/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Activados del Proliferador del Peroxisoma , Proteínas de Unión al Retinol
18.
Curr Issues Mol Biol ; 43(3): 1906-1936, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34889899

RESUMEN

Corn silk (Stigma Maydis) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski's rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski's rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (ß-Amyrone, ß-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and ß-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/farmacología , Zea mays/química , Fenómenos Químicos , Descubrimiento de Drogas , Cromatografía de Gases y Espectrometría de Masas , Humanos , Medicina Tradicional , Modelos Moleculares , Estructura Molecular , Obesidad/tratamiento farmacológico , Relación Estructura-Actividad
19.
Lipids Health Dis ; 20(1): 39, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879188

RESUMEN

BACKGROUND: To investigate the roles of the transcription factors twist family bHLH transcription factor 1 (TWIST1), twist family bHLH transcription factor 2 (TWIST2), and peroxisome proliferator activated receptor gamma (PPARγ) in the progression of nonalcoholic steatohepatitis. METHODS: The protein levels of TWIST1, TWIST2 and PPARγ were determined in the serum of nonalcoholic fatty liver disease (NAFLD) patients and healthy controls by enzyme-linked immunosorbent assay (ELISA). An in vivo model for fatty liver was established by feeding C57BL/6 J mice a high-fat diet (HFD). An in vitro model of steatosis was established by treating LO-2 cells with oleic acid (OA). RNA sequencing was performed on untreated and OA-treated LO-2 cells followed by TWIST1, TWIST2 and PPARγ gene mRNA levels analysis, Gene Ontology (GO) enrichment and pathway analysis. RESULTS: The TWIST2 serum protein levels decreased significantly in all fatty liver groups (P < 0.05), while TWIST1 varied. TWIST2 tended to be lower in mice fed an HFD and was significantly lower at 3 months. Similarly, in the in vitro model, the TWIST2 protein level was downregulated significantly at 48 and 72 h after OA treatment. RNA sequencing of LO-2 cells showed an approximately 2.3-fold decrease in TWIST2, with no obvious change in TWIST1 and PPARγ. The PPAR signaling pathway was enriched, with 4 genes upregulated in OA-treated cells (P = 0.0018). The interleukin (IL)-17 and tumor necrosis factor (TNF) signaling pathways were enriched in OA-treated cells. CONCLUSIONS: The results provide evidence that the TWIST2 and PPAR signaling pathways are important in NAFLD and shed light on a potential mechanism of steatosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR gamma/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteína 1 Relacionada con Twist/metabolismo , Adolescente , Adulto , Animales , Western Blotting , Estudios de Casos y Controles , Línea Celular , Notificación de Enfermedades , Progresión de la Enfermedad , Femenino , Prueba de Tolerancia a la Glucosa , Hepatocitos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/sangre , Proteínas Nucleares/metabolismo , PPAR gamma/sangre , Proteínas Represoras/sangre , Proteína 1 Relacionada con Twist/sangre , Adulto Joven
20.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681767

RESUMEN

Atorvastatin ester (Ate) is a structural trim of atorvastatin that can regulate hyperlipidemia. The purpose of this study was to evaluate the lipid-lowering effect of Ate. Male Sprague Dawley (SD) rats were fed a high-fat diet for seven months and used as a hyperlipidemia model. The lipid level and liver function of the hyperlipidemia rats were studied by the levels of TG, TC, LDL, HDL, ALT, and AST in serum after intragastric administration with different doses of Ate. HE staining was used to observe the pathological changes of the rat liver and gastrocnemius muscle. The lipid deposits in the liver of rats were observed by staining with ORO. The genes in the rat liver were sequenced by RNA-sequencing. The results of the RNA-sequencing were further examined by qRT-PCR and western blotting. Biochemical test results indicated that Ate could obviously improve the metabolic disorder and reduce both the ALT and AST levels in serum of the hyperlipidemia rats. Pathological results showed that Ate could improve HFD-induced lipid deposition and had no muscle toxicity. The RNA-sequencing results suggested that Ate affected liver lipid metabolism and cholesterol, metabolism in the hyperlipidemia-model rats may vary via the PPAR-signaling pathway. The western blotting and qRT-PCR results demonstrated the Ate-regulated lipid metabolism in the hyperlipidemia model through the PPAR-signaling pathway and HMGCR expression. In brief, Ate can significantly regulate the blood lipid level of the model rats, which may be achieved by regulating the PPAR-signaling pathway and HMGCR gene expression.


Asunto(s)
Atorvastatina/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , PPAR gamma/metabolismo , Animales , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/farmacología , Atorvastatina/efectos adversos , Atorvastatina/química , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA