Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 69(1): e12872, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618995

RESUMEN

Members of coccoid green algae have been documented in various extreme environments. In this article, a unicellular green alga was found to slowly grow in high concentration (3.6 g/L) and pure calcium chloride solution in the laboratory. It was successfully cultured and a taxonomic study combined approaches of morphological and molecular methods was conducted to determine its classification attribution, which was followed by a preliminary physiology research to explore its unique tolerance characteristics against calcium chloride stress. The strain was identified as Parachlorella kessleri by very similar morphology and the same phylogenetic position. The morphological differences among the three species in genus Parachlorella were then discussed and the characteristic traits of absent or thin mucilaginous envelop and mantel-shaped chloroplast for P. kessleri were supported. In addition, the almost strictly spherical shape of adult cells could further distinguish the P. kessleri from the other two species. The tolerant characteristics to CaCl2  stress for this strain were confirmed and the limit concentration was revealed as between 2000 and 4000 times than the standard BG11 culture concentration. Therefore, this P. kessleri strain is expected to be a good material to explore the mechanism of resistance to calcium ions stress for eukaryotic microbiology.


Asunto(s)
Chlorophyta , Cloruro de Calcio , Chlorophyta/genética , Cloroplastos , Filogenia
2.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614098

RESUMEN

Salt stress is one of the abiotic stress factors that affect the normal growth and development of higher plants and algae. However, few research studies have focused on calcium stress, especially in algae. In this study, the mechanism of tolerance to high calcium stress of a Parachlorella kessleri strain was explored by the method of transcriptomics combined with physiological and morphological analysis. Concentrations of CaCl2 100 times (3.6 g/L) and 1000 times (36 g/L) greater than the standard culture were set up as stresses. The results revealed the algae could cope with high calcium stress mainly by strengthening photosynthesis, regulating osmotic pressure, and inducing antioxidant defense. Under the stress of 3.6 g/L CaCl2, the algae grew well with normal cell morphology. Although the chlorophyll content was significantly reduced, the photosynthetic efficiency was well maintained by up-regulating the expression of some photosynthesis-related genes. The cells reduced oxidative damage by inducing superoxide dismutase (SOD) activities and selenoprotein synthesis. A large number of free amino acids were produced to regulate the osmotic potential. When in higher CaCl2 stress of 36 g/L, the growth and chlorophyll content of algae were significantly inhibited. However, the algae still slowly grew and maintained the same photosynthetic efficiency, which resulted from significant up-regulation of massive photosynthesis genes. Antioxidant enzymes and glycerol were found to resist oxidative damage and osmotic stress, respectively. This study supplied algal research on CaCl2 stress and provided supporting data for further explaining the mechanism of plant salt tolerance.


Asunto(s)
Antioxidantes , Chlorophyta , Antioxidantes/metabolismo , Cloruro de Calcio/farmacología , Calcio/metabolismo , Fotosíntesis , Clorofila/metabolismo , Estrés Fisiológico/genética , Chlorophyta/metabolismo , Perfilación de la Expresión Génica
3.
Curr Genomics ; 21(8): 610-623, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33414682

RESUMEN

INTRODUCTION: The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector. METHODS: In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR. RESULTS: The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR. CONCLUSION: The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.

4.
Bioprocess Biosyst Eng ; 42(1): 29-36, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30229328

RESUMEN

Treatments with high-voltage electrical discharges (HVED) and high-pressure homogenization (HPH) were studied and compared for the release of ionic components, carbohydrates, proteins, and pigments from microalgae Parachlorella kessleri (P. kessleri). Suspensions (1% w/w) of microalgae were treated by HVED (40 kV/cm, 1-8 ms) or by HPH (400-1200 bar, 1-10 passes). Particle-size distribution (PSD) and microscopic analyses were used to detect the disruption and damage of cells. HVED were very effective for the extraction of ionic cell components and carbohydrates (421 mg/L after 8 ms of the treatment). However, HVED were ineffective for pigments and protein extraction. The concentration of proteins extracted by HVED was just 750 mg/L and did not exceed 15% of the total quantity of proteins. HPH permitted an effective release overall of intracellular compounds from P. kessleri microalgae including a large quantity of proteins, whose release (at 1200 bar) was 4.9 times higher than that obtained by HVED. Consequently, HVED can be used at the first step of the overall extraction process for the selective recovery of low-molecular-weight components. HPH can be then used at the second step for the recovery of remaining cell compounds.


Asunto(s)
Chlorophyta/metabolismo , Electricidad , Electroquímica/métodos , Microalgas/metabolismo , Biomasa , Carbohidratos/química , Iones , Cinética , Tamaño de la Partícula , Pigmentación , Presión , Solubilidad
5.
Prep Biochem Biotechnol ; 46(8): 803-809, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26829380

RESUMEN

Parachlorella kessleri is a promising oil-bearing marine alga which shows decreased growth under high light stress. Osmolytes are known to relieve stress by protecting the cell membrane, proteins, and enzymes. Enhanced production of osmolyte (trehalose) was thus used to relieve stress in P. kessleri by overexpression of trehalose phosphate synthase (TPS) gene. Transformed P. kessleri was grown under different light regimes to study the effect of trehalose overproduction on growth. Study of one of the TPS transformants showed increased trehalose as well as increased biomass and decreased pigments, reactive oxygen species, and lipid peroxidation of cell membrane. The improved photosynthetic performance of the transformant was also signified by pulse-amplitude-modulated fluorometric analysis. All of these factors reveal improved stress tolerance under high light conditions by increased trehalose accumulation due to TPS overexpression in P. kessleri.


Asunto(s)
Chlorophyta/genética , Chlorophyta/fisiología , Glucosiltransferasas/genética , Fotosíntesis , Biocombustibles , Biomasa , Chlorophyta/crecimiento & desarrollo , Técnicas de Transferencia de Gen , Glucosiltransferasas/metabolismo , Luz , Peroxidación de Lípido , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Trehalosa/metabolismo , Regulación hacia Arriba
6.
Biotechnol Biofuels Bioprod ; 17(1): 36, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443960

RESUMEN

BACKGROUND: Previously, we isolated a mutant of Parachlorella kessleri named strain PK4 that accumulated higher concentrations of lipids than the wild-type strain. Resequencing of the PK4 genome identified mutations in three genes which may be associated with the high-lipid phenotype. The first gene, named CDMT1, encodes a protein with a calcium-dependent membrane association domain; the second gene, named DMAN1, encodes endo-1,4-ß-mannanase, while the third gene, named AATPL1, encodes a plastidic ATP/ADP antiporter-like protein. RESULTS: To determine which of these mutant genes are directly responsible for the phenotype of strain PK4, we delivered Cas9-gRNA ribonucleoproteins targeting each of the three genes into the wild-type cells by electroporation and successfully disrupted these three genes separately. The lipid productivity in the disruptants of CDMT1 and DMAN1 was similar to and lower than that in the wild-type strain, while the disruptants of AATPL1 exhibited > 30% higher lipid productivity than the wild-type strain under diurnal conditions. CONCLUSIONS: We succeeded in improving the lipid productivity of P. kessleri by CRISPR/Cas9-mediated gene disruption of AATPL1. The effective gene-editing method established in this study will be useful to improve Parachlorella strains for industrial applications.

7.
Burns ; 50(4): 924-935, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38378390

RESUMEN

Wound healing is a physiological process that results in the reconstruction and restoration of granulation tissue, followed by scar formation. We explored the impact of fatty acids in the form of oils on wound healing since they are part of membrane phospholipids and participate in the inflammatory response. This work investigated the efficiency of fatty acids extracted from microalga Parachlorella kessleri in treating excisional wounds and burns and evaluated their antioxidant activity. The rationale behind this investigation lies in the integral role fatty acids play in membrane phospholipids and their involvement in the inflammatory response. Among different nitrogen sources, glycine showed the highest biomass and lipid productivity (0.08 g L-1 d-1 and 58.37 µgml-1 day-1, respectively). Based on the percentage of polyunsaturated fatty acids that increased by 50.38 % in the Glycine culture of P. kessleri, both total antioxidant capacity and DPPH radical scavenging activity were higher in the Glycine culture than control culture. In 30 anaesthetized male mice divided into 6 groups, using either a burn or an excision, two identical paravertebral full-thickness skin lesions were created. Either oils of P. kessleri (extracted from control and glycine culture) ointments or the vehicle (placebo cream) were applied twice daily to the excisional wounds of mice, while mebo cream was used for burn wounds as well as P. kessleri oil. P. kessleri oils (control or glycine culture) showed a significant effect on the reduction of excisional wounds and burns. Histopathological analysis showed that angiogenesis, collagen fiber formation, and epidermis creation were some of the healing indicators that improved. The key elements for this healing property are omega -3 fatty acids, and both P. kessleri oils extracted from control and glycine culture have significant wound-healing effects. Oil of glycine culture of P. kessleri, however, displayed superior results in this regard.


Asunto(s)
Antioxidantes , Quemaduras , Microalgas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Quemaduras/tratamiento farmacológico , Quemaduras/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Masculino , Ácidos Grasos/farmacología , Glicina/farmacología , Glicina/uso terapéutico , Chlorophyta , Piel/lesiones , Piel/efectos de los fármacos
8.
Environ Pollut ; : 125082, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374767

RESUMEN

Microalgae, such as Parachlorella kessleri, have significant potential for environmental remediation, especially in removing heavy metals like zinc from water. This study investigates how P. kessleri, isolated from a polluted river in Argentina, can remediate zinc. Using atomic force microscopy (AFM), the research examined the interactions between Zn particles and cells grown with different nitrogen sources-nitrate or ammonium. The results showed that cells grown with nitrate produced extracellular polymeric substances (EPS), while those grown with ammonium did not. Raman spectroscopy revealed distinct metabolic responses based on the nitrogen source, with nitrate-grown cells showing altered profiles after zinc exposure. Zinc exposure also changed the surface roughness and nanomechanical properties of the cells, particularly in those producing EPS. AFM force spectroscopy experiments then confirmed strong Zn binding to EPS in nitrate-grown cells, while interactions were weaker in ammonium-grown cells that lacked EPS. Overall, our results elucidate the critical role of EPS in Zn removal by P. kessleri cells and show that Zn remediation by P. kessleri is mediated by EPS adsorption. This study underscores the significance of regulating nitrogen sources to stimulate EPS production, offering insights that are essential for subsequent bioremediation applications.

9.
Environ Pollut ; : 125020, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322106

RESUMEN

Rare earth mining sewage is a significant environmental concern due to its high acidity and ammonia nitrogen levels. Finding a sustainable and cost-effective treatment method is essential. Parachlorella kessleri FM2, a green algae strain isolated in-house, has demonstrated remarkable abilities to grow and remove ammonia nitrogen (NH4+-N) from highly acidic rare earth wastewater without the need for alkaline additives. After optimizing conditions, P. kessleri FM2 achieved an impressive NH4+-N removal rate of 7.94 mg/L/d and a removal efficiency of 98.71% in a 1.5-L photobioreactor. In semi-continuous culture, the average NH4+-N removal rate remained high at 6.67 mg/L/d. When scaled up to continuous culture in a 5-L photobioreactor, P. kessleri FM2 maintained stability with an NH4+-N removal rate of 6.79 mg/L/d. Additionally, we conducted a preliminary analysis of P. kessleri FM2's acid resistance mechanism, further highlighting its potential as a candidate for treating acidic wastewater.

10.
Front Bioeng Biotechnol ; 11: 1233944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767110

RESUMEN

Efficient pH and dissolved CO2 conditions for indoor (50-450 mL scale) and outdoor (100-500 L scale) culture of a green alga BX1.5 strain that can produce useful intracellular lipids and extracellular polysaccharides were investigated for the first time in Parachlorella sp. The cultures harvested under 26 different conditions were analysed for pH, dissolved CO2 concentration, and the biomass of extracellular polysaccharides. The BX1.5 strain could thrive in a wide range of initial medium pH ranging from 3 to 11 and produced valuable lipids such as C16:0, C18:2, and C18:3 under indoor and outdoor culture conditions when supplied with 2.0% dissolved CO2. Particularly, the acidic BG11 medium effectively increased the biomass of extracellular polysaccharides during short-term outdoor cultivation. The BG11 liquid medium also led to extracellular polysaccharide production, independent of acidity and alkalinity, proportional to the increase in total sugars derived from cells supplied with high CO2 concentrations. These results suggest Parachlorella as a promising strain for indoor and outdoor cultivation to produce valuable materials.

11.
Water Res ; 239: 120027, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167853

RESUMEN

Thallium (Tl+) is a trace metal with extreme toxicity and is highly soluble in water, posing a great risk to ecological and human safety. This work aimed to investigate the role played by Tl+ in regulating lipid accumulation in microalgae and the removal efficiency of Tl+. The effect of Tl+ on the cell growth, lipid production and Tl+ removal efficiency of Parachlorella kessleri R-3 was studied. Low concentrations of Tl+ had no significant effect on the biomass of microalgae. When the Tl+ concentration exceeded 5 µg L-1, the biomass of microalgae showed significant decrease. The highest lipid content of 63.65% and lipid productivity of 334.55 mg L-1 d-1 were obtained in microalgae treated with 10 and 5 µg L-1 Tl+, respectively. Microalgae can efficiently remove Tl+ and the Tl+ removal efficiency can reach 100% at Tl+ concentrations of 0-25 µg L-1. The maximum nitric oxide (NO) level of 470.48 fluorescence intensity (1 × 106 cells)-1 and glutathione (GSH) content of 343.51 nmol g-1 (fresh alga) were obtained under 5 µg L-1 Tl+ stress conditions. Furthermore, the exogenous donor sodium nitroprusside (SNP) supplemented with NO was induced in microalgae to obtain a high lipid content (59.99%), lipid productivity (397.99 mg L-1 d-1) and GSH content (430.22 nmol g-1 (fresh alga)). The corresponding analysis results indicated that NO could participate in the signal transduction pathway through modulation of reactive oxygen species (ROS) signaling to activate the antioxidant system by increasing the GSH content to eliminate oxidative damage induced by Tl+ stress. In addition, NO regulation of ROS signaling may enhance transcription factors associated with lipid synthesis, which stimulates the expression of genes related to lipid synthesis, leading to increased lipid biosynthesis in microalgae. Moreover, it was found that the change in Tl+ had little effect on the fatty acid components and biodiesel properties. This study showed that Tl+ stress can promote lipid accumulation in microalgae for biodiesel production and simultaneously effectively remove Tl+, which provided evidence that NO was involved in signal transduction and antioxidant defense, and improved the understanding of the interrelation between NO and ROS to regulate lipid accumulation in microalgae.


Asunto(s)
Metales Pesados , Microalgas , Humanos , Talio/metabolismo , Antioxidantes , Especies Reactivas de Oxígeno/metabolismo , Biodegradación Ambiental , Biocombustibles , Glutatión , Lípidos , Transducción de Señal , Biomasa
12.
Int J Biol Macromol ; 213: 27-42, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35623455

RESUMEN

The water-insoluble part of Parachlorella kessleri HY1 biomass was subjected to the extraction of cell-wall polysaccharides using polar aprotic solvents (DMSO, LiCl/DMSO) and aqueous alkaline solutions (0.1, 1 and 4 mol·l-1 of NaOH). Proteins predominated in all the crude extracts and in the insoluble residues were partially removed by treatment with proteolytic enzymes (pepsin and pronase), and in some cases with the HCl/H2O2 reagent, yielding purified polysaccharide-enriched fractions. These treatments led to the solubilisation of some products in water. The composition and structure of isolated polysaccharides were characterised based on monosaccharide composition, glycosidic linkage and spectroscopic analyses. The DMSO extract contained mainly proteins, and polysaccharides were not detected. The water-soluble parts isolated from the LiCl/DMSO extract contained α-l-rhamnan, α-d-glucan and ß-d-glucogalactan; the water-insoluble part contained (1 â†’ 4)-ß-d-xylan, first isolated from the biomass of green microalgae. The alkali extracts contained polysaccharides of similar structure, and also water-insoluble (1 â†’ 4)-ß-d-mannan. The insoluble part after all extractions contained α-chitin as the main polysaccharide, which was confirmed by spectroscopic methods. All these polysaccharides can play a certain role in the cell wall structure of this microalga.


Asunto(s)
Chlorophyta , Microalgas , Biomasa , Pared Celular/química , Dimetilsulfóxido , Peróxido de Hidrógeno/análisis , Microalgas/genética , Polisacáridos/química , Agua/análisis
13.
Microorganisms ; 10(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35208811

RESUMEN

This study investigated nutrient removal from anaerobic digestion effluent by cultivating mixed-culture microalgae enriched from anaerobic sludge under different pH conditions: RUC (uncontrolled), R7-8 (maintained at 7-8), and R<8 (maintained below 8). Significant amounts of NH4+-N were lost by volatilization in RUC cultures due to increased pH values (≤8.6) during the early period of cultivation. The pH control strategies significantly affected the biological NH4+-N removal (highest in R7-8), microalgal growth (highest in R7-8), biomass settleability (highest in R<8), and microalgal growth relative to bacteria (highest in R<8) in the cultures. Parachlorella completely dominated the microalgal communities in the inoculum and all of the cultures, and grew well at highly acidic pH (<3) induced by culture acidification with microalgal growth. Microalgae-associated bacterial community structure developed very differently among the cultures. The findings call for more attention to the influence and control of pH changes during cultivation in microalgal treatment of anaerobic digestion effluent.

14.
Cells ; 11(8)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35455972

RESUMEN

Light is the essential energy source for autotrophically growing organisms, including microalgae. Both light intensity and light quality affect cell growth and biomass composition. Here we used three green algae-Chlamydomonas reinhardtii, Desmodesmus quadricauda, and Parachlorella kessleri-to study the effects of different light intensities and light spectra on their growth. Cultures were grown at three different light intensities (100, 250, and 500 µmol m-2 s-1) and three different light sources: fluorescent lamps, RGB LEDs, and white LEDs. Cultures of Desmodesmus quadricauda and Parachlorella kessleri were saturated at 250 µmol m-2 s-1, and further increasing the light intensity did not improve their growth. Chlamydomonas reinhardtii cultures did not reach saturation under the conditions used. All species usually divide into more than two daughter cells by a mechanism called multiple fission. Increasing light intensity resulted in an increase in maximum cell size and division into more daughter cells. In Parachlorella kessleri cells, the concentration of photosynthetic pigments decreased with light intensity. Different light sources had no effect on algal growth or photosynthetic pigments. The results show a species-specific response of algae to light intensity and support the use of any white light source for their cultivation without negative effects on growth.


Asunto(s)
Chlamydomonas reinhardtii , Chlorophyta , Microalgas , Biomasa , Luz , Fotosíntesis
15.
Biotechnol Biofuels Bioprod ; 15(1): 122, 2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36372889

RESUMEN

BACKGROUND: Microalgae, with their high adaptability to various stress conditions and rapid growth, are considered excellent biomass resources for lipid production and biodiesel feedstocks. However, lipid yield and productivity of the natural strains are common bottlenecks in their large-scale use for lipid production, which can be overcome by evolving new strains using conventional and advanced mutagenic techniques. It is challenging to generate microalgae strains capable of high lipid synthesis through natural selection. As a result, random mutagenesis is currently considered a viable option in many scenarios. The objective of this study was to explore atmospheric and room temperature plasma (ARTP) as a random mutagenesis technique to obtain high lipid-accumulating mutants of a green microalga for improved biodiesel production. RESULTS: A green microalgal species was isolated from the Chinese Yellow Sea and identified as Parachlorella kessleri (OM758328). The isolated microalga was subsequently mutated by ARTP to obtain high lipid-accumulating mutants. Based on the growth rate and lipid content, 5 mutants (named M1, M2, M4, M5, and M8) were selected from 15 pre-selected mutants. These five mutants varied in their growth rate from 0.33 to 0.68 day-1, with the lipid content varying between 0.25 g/L in M2 to 0.30 g/L in M8 at 10th day of cultivation. Among the mutants, M8 showed the maximum biomass productivity (0.046 g/L/day) and lipid productivity (20.19 mg/L/day), which were 75% and 44% higher than the wild strain, respectively. The triglyceride (TAG) content of M8 was found to be 0.56 g/L at 16th day of cultivation, which was 1.77-fold higher than that of the wild strain. Furthermore, M8 had the highest saturated fatty acids (C16-18) with the lowermost polyunsaturated fatty acid content, which are favorable properties of a biodiesel feedstock according to international standards. CONCLUSION: The mutant strain of P. kessleri developed by the ARTP technique exhibited significant improvements in biomass productivity, lipid content, and biodiesel quality. Therefore, the biomass of this mutant microalga could be a potential feedstock for biodiesel production.

16.
J Phycol ; 47(3): 638-652, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27021993

RESUMEN

Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS-1, and ITS-2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium-like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.

17.
Mitochondrial DNA B Resour ; 6(8): 2408-2409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345710

RESUMEN

Parachlorella kessleri TY isolated from the lawn soil belongs to Trebouxiophyceae, Chlorophyta. The complete mitogenome of P. kessleri sequenced and described. It is a circular duplex molecule 64,744 bp in length consisting of 28 protein-coding genes, 23 transfer RNA (tRNA) genes, four ribosomal RNA (rRNA) genes, and one putative open reading frames (ORFs). Phylogenetic analysis places P. kessleri mitogenome in a branch sister to Picochlorum sp., Lobosphaera incisa, and Chloroparvula sp., clade in which Picochlorum as P. kessleri also reported as oil-rich green microalgae.

18.
J Biotechnol ; 329: 151-159, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33592215

RESUMEN

Large-scale cultivations of photoautotrophic microorganisms represent a very promising and potentially cost-effective alternative for climate change mitigation, when associated to the co-production of high value bioproducts, such as fatty acids and carotenoids, considering the growing demand for natural products. During microalgae cultivation, CO2 enrichment is a requirement to reach high productivities, although high CO2 levels are normally stressful to microalgae. On the other hand, cellular stress is a well reported strategy to induce carotenoid and fatty acids production. This work evaluated extracellular carotenoid production from the mangrove-isolated microalga Parachlorella kessleri cultivated under 5, 15 and 30% CO2 in stirred tank photobioreactors. In the 10th day of cultivation, CO2 supply was interrupted until the end of the cultivation (14th day), causing a stressful and imperative condition for microalgae cells to release the red pigment. Growth kinetics, physiological parameters and bioproducts production were evaluated. Growth kinetics were similar under all tested conditions and differences were not statistically significant, with the highest values of µmax, biomass concentration, lipid content and CO2 fixation rate of 0.77 d-1, 1.24 g L-1, 241 mg g-1 (dw) and 165 mg L-1 d-1, respectively. In contrast, total carotenoid concentrations varied significantly (p < 0.01), with the highest concentration of 0.030 µg mL-1 under 5% CO2. The produced red pigment presented antioxidant activity and characteristics of carotenoids confirmed by UV-vis and tandem mass spectrometry (MS/MS). The fatty acid profiles in the biomass varied in response to CO2 levels in the cultivations. In general, higher CO2 concentrations (15 and 30%) favored the production of saturated and mono-unsaturated fatty acids, suitable as biodiesel feedstock, while drastically decreased the production of the polyunsaturated.


Asunto(s)
Chlorophyta , Microalgas , Biocombustibles , Biomasa , Dióxido de Carbono , Carotenoides , Ácidos Grasos , Fotobiorreactores , Espectrometría de Masas en Tándem
19.
Artículo en Inglés | MEDLINE | ID: mdl-33807417

RESUMEN

In the present study we investigated the ability of the microalgal strain Parachlorella sp. AA1 to biologically uptake a radionuclide waste material. Batch experiments were conducted to investigate the biosorption of uranyl ions (U(VI)) in the 0.5-50.0 mg/L concentration range by strain AA1. The results showed that AA1 biomass could uptake U(VI). The highest removal efficiency and biosorption capacity (95.6%) occurred within 60 h at an initial U(VI) concentration of 20 mg/L. The optimum pH for biosorption was 9.0 at a temperature of 25 °C. X-ray absorption near edge structure analysis confirmed the presence of U(VI) in pellets of Parachlorella sp. AA1 cells. The biosorption methods investigated here may be useful in the treatment and disposal of nuclides and heavy metals in diverse wastewaters.


Asunto(s)
Chlorophyta , Contaminantes Químicos del Agua , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Iones , Cinética
20.
Front Nutr ; 8: 763492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692754

RESUMEN

The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the pathogenesis of a wide variety of human diseases. Although many drugs and inhibitors have been developed to treat NLRP3-associated diseases, only limited clinical data support their efficacy and safety. Chlorella, a unicellular green alga that is widely and safely used as a food supplement, contains various antioxidants. In this study, we obtained a fat-soluble extract from Chlorella (CE) and demonstrated that it reduced NLRP3 inflammasome activation by inhibiting mitochondrial reactive oxygen species and caspase-1 activation. In addition, CE supplementation attenuated lipopolysaccharide-induced interleukin 1ß transcription through activation of hypoxia-inducible factor 1α in vitro and in vivo. As Chlorella is a safe and useful food supplement, it may be a practical pharmacological approach for treating NLRP3-driven diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA