Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107838, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39342999

RESUMEN

ADP-ribosylation is an ancient posttranslational modification with exceptional versatility in terms of breadth of modification targets including at least seven different amino acid side chains, various moieties on nucleic acids and a variety of small chemical compounds. The spatiotemporal signalling dynamic of the different modification variations is tightly regulated and depends on the writers, erases, and readers of each type. Amongst these, tyrosine ADP-ribosylation (Tyr-ADPr) has been consistently detected as a novel modification type, but systematic analysis of its potential physiological role, modification establishment and reversal are still lacking. Here we present a reanalysis of recent ADP-ribosylome data and show that Tyr-ADPr sites are conserved and enriched amongst ribosome biogenesis and mRNA processing proteins and that these sites are affected by the status of ARH3 ADP-ribose hydrolase. To facilitate the study of Tyr-ADPr, we establish methodologies for the synthesis of well-defined Tyr-ADPr peptides and with these could show that Tyr-ADPr is reversed both by ARH3 and PARG enzymes. Together, our work lays the foundation for the future exploration of the Tyr-ADPr.

2.
Biochem J ; 481(1): 33-44, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112318

RESUMEN

Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Humanos , Piruvaldehído/metabolismo , Proinsulina , Péptidos/química , Endopeptidasas
3.
J Biol Chem ; 299(8): 105049, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451485

RESUMEN

Rufomycins constitute a class of cyclic heptapeptides isolated from actinomycetes. They are secondary metabolites that show promising treatment against Mycobacterium tuberculosis infections by inhibiting a novel drug target. Several nonproteinogenic amino acids are integrated into rufomycins, including a conserved 3-nitro-tyrosine. RufO, a cytochrome P450 (CYP)-like enzyme, was proposed to catalyze the formation of 3-nitro-tyrosine in the presence of O2 and NO. To define its biological function, the interaction between RufO and the proposed substrate tyrosine is investigated using various spectroscopic methods that are sensitive to the structural change of a heme center. However, a low- to high-spin state transition and a dramatic increase in the redox potential that are commonly found in CYPs upon ligand binding have not been observed. Furthermore, a 1.89-Å crystal structure of RufO shows that the enzyme has flexible surface regions, a wide-open substrate access tunnel, and the heme center is largely exposed to solvent. Comparison with a closely related nitrating CYP reveals a spacious and hydrophobic distal pocket in RufO, which is incapable of stabilizing a free amino acid. Molecular docking validates the experimental data and proposes a possible substrate. Collectively, our results disfavor tyrosine as the substrate of RufO and point to the possibility that the nitration occurs during or after the assembly of the peptides. This study indicates a new function of the unique nitrating enzyme and provides insights into the biosynthesis of nonribosomal peptides.


Asunto(s)
Aminoácidos , Sistema Enzimático del Citocromo P-450 , Oligopéptidos , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , Simulación del Acoplamiento Molecular , Nitratos , Tirosina/metabolismo , Actinobacteria , Oligopéptidos/biosíntesis
4.
J Biol Chem ; 299(4): 103068, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842500

RESUMEN

µ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.


Asunto(s)
Analgésicos , Conotoxinas , Canal de Sodio Activado por Voltaje NAV1.7 , Bloqueadores del Canal de Sodio Activado por Voltaje , Humanos , Analgésicos/farmacología , Analgésicos/química , Conotoxinas/química , Conotoxinas/farmacología , Disulfuros/metabolismo , Células HEK293 , Simulación de Dinámica Molecular , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Péptidos/farmacología , Péptidos/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
5.
Chembiochem ; 25(3): e202300731, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031893

RESUMEN

We designed a platform for monitoring the degradation of exogenous proteins in live cells. We engineered a semi-synthetic platform, which consists of Enhanced Green Fluorescent Protein tagged with SpyCatcher to enable its conjugation to a SpyTag peptide bearing a Von Hippel-Lindau E3 ligand, which was delivered to live cells to promote its degradation. This platform lays the ground for studying the degradation of endogenous proteins equipped with SpyTag and for tracking the degradation of post-translationally modified proteins in live cells.


Asunto(s)
Proteolisis , Péptidos , Procesamiento Proteico-Postraduccional
6.
Chembiochem ; : e202400440, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984757

RESUMEN

Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e.g. arginine, cysteine and glutamic acid, has been expanded with serine, tyrosine and histidine, among others. Well-defined ADPr-peptides are valuable tools for investigating the exact structures, mechanisms of action and interaction partners of the different flavors of this modification. This review provides a comprehensive overview of synthetic and chemoenzymatic methodologies that enabled the construction of peptides mono-ADP-ribosylated on various amino acids, and close mimetics thereof.

7.
Chembiochem ; 25(5): e202300818, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149322

RESUMEN

Insulin has long provided a model for studies of protein folding and stability, enabling enhanced treatment of diabetes mellitus via analogue design. We describe the chemical synthesis of a basal insulin analogue stabilized by substitution of an internal cystine (A6-A11) by a diselenide bridge. The studies focused on insulin glargine (formulated as Lantus® and Toujeo®; Sanofi). Prepared at pH 4 in the presence of zinc ions, glargine exhibits a shifted isoelectric point due to a basic B chain extension (ArgB31 -ArgB32 ). Subcutaneous injection leads to pH-dependent precipitation of a long-lived depot. Pairwise substitution of CysA6 and CysA11 by selenocysteine was effected by solid-phase peptide synthesis; the modified A chain also contained substitution of AsnA21 by Gly, circumventing acid-catalyzed deamidation. Although chain combination of native glargine yielded negligible product, in accordance with previous synthetic studies, the pairwise selenocysteine substitution partially rescued this reaction: substantial product was obtained through repeated combination, yielding a stabilized insulin analogue. This strategy thus exploited both (a) the unique redox properties of selenocysteine in protein folding and (b) favorable packing of an internal diselenide bridge in the native state, once achieved. Such rational optimization of protein folding and stability may be generalizable to diverse disulfide-stabilized proteins of therapeutic interest.


Asunto(s)
Insulina , Selenocisteína , Insulina Glargina , Cistina , Disulfuros
8.
Chembiochem ; : e202400589, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186607

RESUMEN

Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three-dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein-protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome-binding domain of an intrinsically disordered protein - HMGN1 - using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over-predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.

9.
Chembiochem ; : e202400253, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965889

RESUMEN

The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.

10.
J Exp Bot ; 75(17): 5438-5456, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38717932

RESUMEN

Plant peptides communicate by binding to a large family of receptor-like kinases (RLKs), and they share a conserved binding mechanism, which may account for their promiscuous interaction with several RLKs. In order to understand the in vivo binding specificity of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptide family in Arabidopsis, we have developed a novel set of CLAVATA3 (CLV3)-based peptide tools. After carefully evaluating the CLE peptide binding characteristics, using solid phase synthesis process, we modified the CLV3 peptide and attached a fluorophore and a photoactivable side group. We observed that the labeled CLV3 shows binding specificity within the CLAVATA1 clade of RLKs while avoiding the distantly related PEP RECEPTOR clade, thus resolving the contradictory results obtained previously by many in vitro methods. Furthermore, we observed that the RLK-bound CLV3 undergoes clathrin-mediated endocytosis and is trafficked to the vacuole via ARA7 (a Rab GTPase)-labeled endosomes. Additionally, modifying CLV3 for light-controlled activation enabled spatial and temporal control over CLE signaling. Hence, our CLV3 macromolecular toolbox can be used to study rapid cell specific down-stream effects. Given the conserved binding properties, in the future our toolbox can also be used as a template to modify other CLE peptides.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Unión Proteica , Péptidos/metabolismo
11.
Chemistry ; : e202402790, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367746

RESUMEN

Nowadays, peptidomimetics are widely studied, being useful tools in drug discovery and medicinal chemistry. The coupling between a carboxylic acid with an amine to form a peptide bond is the most common reaction to obtain peptides/peptidomimetics. In this work, we have investigated an innovative metal-free photoredox-catalyzed carbamoylation to form peptidomimetics thanks to the reaction between dihydropyridines functionalized with amino acids (or peptide sequences) and differently functionalized imines. As the organic photocatalyst, we used 4CzIPN, a donor-acceptor cyanoarene vastly used in photoredox catalysis. By easily modulating the amino acid (or peptide sequence), which is directly attached to the dihydropyridine, we proposed this key-reaction as new valuable method to obtain peptidomimetics, in situ building the not-natural portion of the sequence. Moreover, we successfully employed this methodology in solid phase peptide synthesis, both inserting the new photoredox-generated amino acid at the end or in the middle of the sequence. Peptides with different lengths and secondary structures were prepared, proving the success of this approach, even in sterically hindered environment. Herein, to the best of our knowledge, we describe the first photocatalytic protocol which allows the building of the peptide backbone, with the possibility of simultaneously inserting a non-coded amino acid in the sequence.

12.
Chemistry ; 30(56): e202402552, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981861

RESUMEN

While remarkable progress has been made in the development of peptide medicines, many problems related to peptide synthesis remain unresolved. Previously, we reported electrochemical peptide synthesis using a phosphine as a potentially recyclable coupling reagent. However, there was room for improvement from the point of view of reaction efficiency, especially in the carboxylic acid activation step and the peptide bond formation step. To overcome these challenges, we searched for the optimal phosphine. Among phosphines with various electronic properties, we found that electron-rich triaryl phosphines improved the reaction efficiency. Consequently, we successfully performed electrochemical peptide synthesis on sterically hindered and valuable amino acids. We also synthesized oligopeptides that were challenging with our previous method. Finally, we examined the effect of substituents on the phosphine cations, and gained some insights into reactivity, which will aid researchers designing reactions involving phosphine cations.


Asunto(s)
Técnicas Electroquímicas , Electrones , Péptidos , Fosfinas , Fosfinas/química , Péptidos/química , Péptidos/síntesis química , Aminoácidos/química , Oligopéptidos/química , Oligopéptidos/síntesis química , Ácidos Carboxílicos/química
13.
Chemistry ; 30(41): e202401619, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38773843

RESUMEN

Organic molecules with light-modifiable reactivity are important in many fields because they can serve as the "switch" for light to trigger chemical processes. Herein, we disclose a new type of stable non-twisted amides, the reactivity of which can be turned on by light as acyl transfer reagents. Upon photo-activation, these amides react with various nucleophiles including amines, phenols, hydroxide, thiols, boronic acids, and alkynes either under metal-free or metal-catalysis conditions. This reactivity hinges on the design and synthesis of a photo-activatable reagent (7-nitro-5,6-dihydrophenanthridine), which undergoes self-aromatization enabled by an internal oxidant under light. This masked acyl donor group is anticipated to be useful in scenarios where light is preferred to trigger a chemical process.

14.
Chemistry ; : e202403288, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333757

RESUMEN

A robust, practical, and sustainable isomerization-suppressed peptide bond formation via acyl sulfonamide, a twisted amide, is disclosed. Tosyl isocyanate and pentafluorobenzyl bromide were applied in combination to activate the peptide C-terminus, which then reacted with an amine to yield an elongated peptide with high stereochemical purity. Careful analysis of NMR spectra of the active intermediate revealed the presence of an intramolecular hydrogen bond, suggesting that the hydrogen bond suppressed Cα-epimerization during amidation. The isomerization suppression by the intramolecular hydrogen bond is expected to be effective even under high dilution conditions, making the present method a powerful tool for the synthesis of complex macrocyclic peptides. In addition to peptide synthesis, the developed synthetic entry to twisted amides can be applied to the investigation of transition metal-catalyzed N-C bond activation. Moreover, the application to the N-C bond activation returned insight into peptide synthesis, leading to the use of sulfonamide as a protecting group of carboxylic acid that can be orthogonally removed in the presence of other conventional protecting groups.

15.
Cell Commun Signal ; 22(1): 94, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308278

RESUMEN

BACKGROUND: Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS: Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS: Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION: Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.


Asunto(s)
Quimiocina CXCL10 , Quimiotaxis , Glicosaminoglicanos , Animales , Cricetinae , Humanos , Ratones , Quimiocina CXCL10/metabolismo , Cricetulus , Células Endoteliales/metabolismo , Heparina/metabolismo , Linfocitos T/metabolismo , Glicosaminoglicanos/metabolismo
16.
Protein Expr Purif ; 219: 106477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38527576

RESUMEN

Semaglutide is currently the most promising antidiabetic drug, especially for the treatment of type 2 diabetes mellitus, due to its excellent efficacy in glycemic control and weight loss. However, the production of semaglutide remains high cost, and high yield, low cost, and high purity still remains a challenge. Herein, we reported a convenient and high-yield strategy for the preparation of semaglutide through fragmented condensation coupling, involving solid-phase peptide synthesis of tetrapeptide and on-column refolding and on-column enzyme cleavage based inclusion body expression of Lys26Arg34GLP-1 (11-37) with fused protein tags in an X-Y-D4K-G pattern. The optimized N-terminal protein tag significantly boosts inclusion body expression level, while on-column refolding and on-column enzyme cleavage avoid precipitation, enhancing efficiency and yield together with one-step purification. The successful preparation of semaglutide is expected to achieve large-scale industrial production with low cost, high yield and high purity.


Asunto(s)
Péptidos Similares al Glucagón , Cuerpos de Inclusión , Técnicas de Síntesis en Fase Sólida , Péptidos Similares al Glucagón/química , Técnicas de Síntesis en Fase Sólida/métodos , Cuerpos de Inclusión/química , Escherichia coli/genética , Escherichia coli/metabolismo , Hipoglucemiantes/química , Humanos
17.
Bioorg Med Chem Lett ; 98: 129589, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097140

RESUMEN

Elevated levels of receptor tyrosine kinase-like orphan receptor 1 (RORl) expression are observed in multiple hematological and solid tumors, but not in most of the healthy adult tissues, identifying ROR1 as an attractive target for tumor-specific therapy. Herein we will describe the discovery of macrocyclic peptides as binders of the extracellular Cysteine-Rich Domain (CRD) of human ROR1 via mRNA in vitro selection technology using the PDPS platform, followed by exploration of sidechain SAR of parent macrocycle peptides, fluorescently labeled analogs, and a Peptide Drug Conjugate (PDC). The parent macrocyclic peptides represented by Compound 1 and Compound 14 displayed nanomolar cell-based binding to ROR1 and relatively good internalization in 786-O and MDA-MB-231 tumor cell lines. However, these peptides were not observed to induce apoptosis in Mia PaCa-2 cells, a model pancreatic tumor cell line with a relatively low level of cell surface expression of ROR1.


Asunto(s)
Péptidos Cíclicos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Adulto , Humanos , Línea Celular Tumoral , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/efectos de los fármacos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología
18.
Bioorg Med Chem ; 102: 117663, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38457910

RESUMEN

We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions. Cleavage of these peptide-oxazole conjugates is demonstrated on a broad scope of peptides containing various natural and unnatural amino acids. These results represent the first example of a peptide-based linker that is cleaved through single-electron oxidation. The oxazole is also demonstrated to be a suitable linker for both the release of a peptide from a conjugated small molecule and the orthogonal release of cargo from a peptide containing multiple cleavable linkers. Oxazole linkers could serve as a promising tool for peptide screening platforms such as peptide-encoded libraries.


Asunto(s)
Oxazoles , Péptidos , Oxazoles/química , Péptidos/química , Aminoácidos/química , Biblioteca de Péptidos , Oxidación-Reducción
19.
Bioorg Med Chem ; 111: 117869, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126834

RESUMEN

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Antineoplásicos , Camptotecina , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Camptotecina/farmacología , Camptotecina/química , Camptotecina/síntesis química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Movimiento Celular/efectos de los fármacos
20.
Bioorg Med Chem ; 109: 117794, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875875

RESUMEN

Dolastatin 10 (Dol-10), a natural marine-source pentapeptide, is a powerful antimitotic agent regarded as one of the most potent anticancer compounds found to date. Dol-10 however, lacks chemical conjugation capabilities, which restricts the feasibility of its application in targeted drug therapy. This limitation has spurred the prospect that chemical structure of the parent molecule might allow conjugation of the derivatives to drug carriers such as antibodies. By first employing docking studies, we designed and prepared a series of novel Dol-10 analogs with a modified C-terminus, preserving high potency of the parent compound while enhancing conjugation capability. The modifications involved the introduction of a methyleneamine functionality at position 4 of the 1,3-thiazole ring, along with the substitution of the thiazole ring with a 1,2,3-triazole moiety, furnished with methylenehydroxy, carboxy, methyleneamine, and N(Me)-methyleneamine tethering functionalities at position 4. Among the synthesized pentapeptides, DA-1 exhibited the highest potency in prostate cancer (PC-3) cells, eliciting apoptosis (IC50 0.2 ± 0.1 nm) and cell cycle arrest at the mitotic stage after at least 6 days of culture. This delayed response suggests the accumulation of cellular stress or significant physiological alterations that profoundly impact the cell cycle. We believe that these novel Dol-10 derivates represent a new and straightforward route for the development of C-terminus modified Dol-10-based microtubule inhibitors, thereby advancing targeted anticancer therapy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Depsipéptidos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Depsipéptidos/química , Depsipéptidos/farmacología , Depsipéptidos/síntesis química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Apoptosis/efectos de los fármacos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA