Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.678
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(5): 923-939.e14, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868214

RESUMEN

We conduct high coverage (>30×) whole-genome sequencing of 180 individuals from 12 indigenous African populations. We identify millions of unreported variants, many predicted to be functionally important. We observe that the ancestors of southern African San and central African rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a large effective population size. We observe evidence for ancient population structure in Africa and for multiple introgression events from "ghost" populations with highly diverged genetic lineages. Although currently geographically isolated, we observe evidence for gene flow between eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ∼12 kya. We identify signatures of local adaptation for traits related to skin color, immune response, height, and metabolic processes. We identify a positively selected variant in the lightly pigmented San that influences pigmentation in vitro by regulating the enhancer activity and gene expression of PDPK1.


Asunto(s)
Aclimatación , Pigmentación de la Piel , Humanos , Secuenciación Completa del Genoma , Densidad de Población , África , Proteínas Quinasas Dependientes de 3-Fosfoinosítido
2.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36455558

RESUMEN

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Asunto(s)
Judíos , Población Blanca , Humanos , Judíos/genética , Genética de Población , Genoma Humano
3.
Cell ; 178(4): 820-834.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398339

RESUMEN

Delineating ecologically meaningful populations among microbes is important for identifying their roles in environmental and host-associated microbiomes. Here, we introduce a metric of recent gene flow, which when applied to co-existing microbes, identifies congruent genetic and ecological units separated by strong gene flow discontinuities from their next of kin. We then develop a pipeline to identify genome regions within these units that show differential adaptation and allow mapping of populations onto environmental variables or host associations. Using this reverse ecology approach, we show that the human commensal bacterium Ruminococcus gnavus breaks up into sharply delineated populations that show different associations with health and disease. Defining populations by recent gene flow in this way will facilitate the analysis of bacterial and archaeal genomes using ecological and evolutionary theory developed for plants and animals, thus allowing for testing unifying principles across all biology.


Asunto(s)
Clostridiales/genética , Flujo Génico , Microbiota/genética , Adaptación Fisiológica/genética , Alelos , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos , Modelos Genéticos , Tasa de Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Prochlorococcus/genética , Sulfolobus/genética , Vibrio/genética
4.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626772

RESUMEN

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Asunto(s)
Genética de Población , Genoma Humano/genética , Selección Genética , Secuenciación Completa del Genoma , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Malasia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética , Singapur/epidemiología
5.
Cell ; 174(6): 1424-1435.e15, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30078708

RESUMEN

FOXP2, initially identified for its role in human speech, contains two nonsynonymous substitutions derived in the human lineage. Evidence for a recent selective sweep in Homo sapiens, however, is at odds with the presence of these substitutions in archaic hominins. Here, we comprehensively reanalyze FOXP2 in hundreds of globally distributed genomes to test for recent selection. We do not find evidence of recent positive or balancing selection at FOXP2. Instead, the original signal appears to have been due to sample composition. Our tests do identify an intronic region that is enriched for highly conserved sites that are polymorphic among humans, compatible with a loss of function in humans. This region is lowly expressed in relevant tissue types that were tested via RNA-seq in human prefrontal cortex and RT-PCR in immortalized human brain cells. Our results represent a substantial revision to the adaptive history of FOXP2, a gene regarded as vital to human evolution.


Asunto(s)
Factores de Transcripción Forkhead/genética , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Bases de Datos Genéticas , Exones , Femenino , Genoma Humano , Haplotipos , Humanos , Intrones , Masculino , Cadenas de Markov , Polimorfismo de Nucleótido Simple , Corteza Prefrontal/metabolismo
6.
Am J Hum Genet ; 111(4): 668-679, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38508194

RESUMEN

Populations of the Eastern Highlands of Papua New Guinea (EHPNG, area 11,157 km2) lived in relative isolation from the rest of the world until the mid-20th century, and the region contains a wealth of linguistic and cultural diversity. Notably, several populations of EHPNG were devastated by an epidemic prion disease, kuru, which at its peak in the mid-twentieth century led to some villages being almost depleted of adult women. Until now, population genetic analyses to learn about genetic diversity, migration, admixture, and the impact of the kuru epidemic have been restricted to a small number of variants or samples. Here, we present a population genetic analysis of the region based on genome-wide genotype data of 943 individuals from 21 linguistic groups and 68 villages in EHPNG, including 34 villages in the South Fore linguistic group, the group most affected by kuru. We find a striking degree of genetic population structure in the relatively small region (average FST between linguistic groups 0.024). The genetic population structure correlates well with linguistic grouping, with some noticeable exceptions that reflect the clan system of community organization that has historically existed in EHPNG. We also detect the presence of migrant individuals within the EHPNG region and observe a significant excess of females among migrants compared to among non-migrants in areas of high kuru exposure (p = 0.0145, chi-squared test). This likely reflects the continued practice of patrilocality despite documented fears and strains placed on communities as a result of kuru and its associated skew in female incidence.


Asunto(s)
Kuru , Priones , Adulto , Femenino , Humanos , Kuru/epidemiología , Kuru/genética , Kuru/historia , Papúa Nueva Guinea/epidemiología , Priones/genética , Genotipo , Aprendizaje
7.
Am J Hum Genet ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39025064

RESUMEN

Joint association analysis of multiple traits with multiple genetic variants can provide insight into genetic architecture and pleiotropy, improve trait prediction, and increase power for detecting association. Furthermore, some traits are naturally high-dimensional, e.g., images, networks, or longitudinally measured traits. Assessing significance for multitrait genetic association can be challenging, especially when the sample has population sub-structure and/or related individuals. Failure to adequately adjust for sample structure can lead to power loss and inflated type 1 error, and commonly used methods for assessing significance can work poorly with a large number of traits or be computationally slow. We developed JASPER, a fast, powerful, robust method for assessing significance of multitrait association with a set of genetic variants, in samples that have population sub-structure, admixture, and/or relatedness. In simulations, JASPER has higher power, better type 1 error control, and faster computation than existing methods, with the power and speed advantage of JASPER increasing with the number of traits. JASPER is potentially applicable to a wide range of association testing applications, including for multiple disease traits, expression traits, image-derived traits, and microbiome abundances. It allows for covariates, ascertainment, and rare variants and is robust to phenotype model misspecification. We apply JASPER to analyze gene expression in the Framingham Heart Study, where, compared to alternative approaches, JASPER finds more significant associations, including several that indicate pleiotropic effects, most of which replicate previous results, while others have not previously been reported. Our results demonstrate the promise of JASPER for powerful multitrait analysis in structured samples.

8.
Proc Natl Acad Sci U S A ; 121(19): e2315780121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687793

RESUMEN

Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.


Asunto(s)
Depresión Endogámica , Modelos Genéticos , Humanos , Linaje , Genética de Población/métodos , Endogamia , Alelos
9.
Am J Hum Genet ; 110(11): 1853-1862, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37875120

RESUMEN

The heritability explained by local ancestry markers in an admixed population (hγ2) provides crucial insight into the genetic architecture of a complex disease or trait. Estimation of hγ2 can be susceptible to biases due to population structure in ancestral populations. Here, we present heritability estimation from admixture mapping summary statistics (HAMSTA), an approach that uses summary statistics from admixture mapping to infer heritability explained by local ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations, we demonstrate that HAMSTA hγ2 estimates are approximately unbiased and are robust to ancestral stratification compared to existing approaches. In the presence of ancestral stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise error rate (FWER) of ∼5% for admixture mapping, unlike existing FWER estimation approaches. We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We observe hˆγ2 in the 20 phenotypes range from 0.0025 to 0.033 (mean hˆγ2 = 0.012 ± 9.2 × 10-4), which translates to hˆ2 ranging from 0.062 to 0.85 (mean hˆ2 = 0.30 ± 0.023). Across these phenotypes we find little evidence of inflation due to ancestral population stratification in current admixture mapping studies (mean inflation factor of 0.99 ± 0.001). Overall, HAMSTA provides a fast and powerful approach to estimate genome-wide heritability and evaluate biases in test statistics of admixture mapping studies.


Asunto(s)
Negro o Afroamericano , Genética de Población , Humanos , Mapeo Cromosómico , Fenotipo , Polimorfismo de Nucleótido Simple/genética
10.
Mol Biol Evol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995236

RESUMEN

Kazakh people, like many other populations that settled in Central Asia, demonstrate an array of mixed anthropological features of East Eurasian (EEA) and West Eurasian (WEA) populations, indicating a possible scenario of biological admixture between already differentiated EEA and WEA populations. However, their complex biological origin and genomic makeup, as well as their genetic interaction with surrounding populations, are not well understood. In an attempt to decipher their genetic structure and population history, we conducted, to our knowledge, the first whole-genome sequencing study of Kazakhs residing in Xinjiang (KZK). We demonstrated that KZK derived their ancestries from four ancestral source populations: East Asian (∼39.7%), West Asian (∼28.6%), Siberian (∼23.6%), and South Asian (∼8.1%). The recognizable interactions of EEA and WEA ancestries in Kazakhs were dated back to the 15th century BCE. Kazakhs were genetically distinctive from Uyghurs in terms of their overall genomic makeup, although the two populations were closely related in genetics, and both showed a substantial admixture of EEA and WEA ancestries. Notably, we identified a considerable sex-biased admixture, with an excess of western males and eastern females contributing to the KZK gene pool. We further identified a set of genes that showed remarkable differentiation in KZK from the surrounding populations, including those associated with skin color (SLC24A5, OCA2), essential hypertension (HLA-DQB1), hypertension (MTHFR, SLC35F3), and neuron development (CNTNAP2). These results advance our understanding of the complex history of contacts between Western and Eastern Eurasians, especially those situated along the old Silk Road.

11.
Am J Hum Genet ; 109(4): 727-737, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35298920

RESUMEN

Inferring the structure of human populations from genetic variation data is a key task in population and medical genomic studies. Although a number of methods for population structure inference have been proposed, current methods are impractical to run on biobank-scale genomic datasets containing millions of individuals and genetic variants. We introduce SCOPE, a method for population structure inference that is orders of magnitude faster than existing methods while achieving comparable accuracy. SCOPE infers population structure in about a day on a dataset containing one million individuals and variants as well as on the UK Biobank dataset containing 488,363 individuals and 569,346 variants. Furthermore, SCOPE can leverage allele frequencies from previous studies to improve the interpretability of population structure estimates.


Asunto(s)
Bancos de Muestras Biológicas , Genética de Población , Frecuencia de los Genes/genética , Genómica , Humanos
12.
Am J Hum Genet ; 109(5): 812-824, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35417677

RESUMEN

The application of genetic relationships among individuals, characterized by a genetic relationship matrix (GRM), has far-reaching effects in human genetics. However, the current standard to calculate the GRM treats linked markers as independent and does not explicitly model the underlying genealogical history of the study sample. Here, we propose a coalescent-informed framework, namely the expected GRM (eGRM), to infer the expected relatedness between pairs of individuals given an ancestral recombination graph (ARG) of the sample. Through extensive simulations, we show that the eGRM is an unbiased estimate of latent pairwise genome-wide relatedness and is robust when computed with ARG inferred from incomplete genetic data. As a result, the eGRM better captures the structure of a population than the canonical GRM, even when using the same genetic information. More importantly, our framework allows a principled approach to estimate the eGRM at different time depths of the ARG, thereby revealing the time-varying nature of population structure in a sample. When applied to SNP array genotypes from a population sample from Northern and Eastern Finland, we find that clustering analysis with the eGRM reveals population structure driven by subpopulations that would not be apparent via the canonical GRM and that temporally the population model is consistent with recent divergence and expansion. Taken together, our proposed eGRM provides a robust tree-centric estimate of relatedness with wide application to genetic studies.


Asunto(s)
Genoma , Modelos Genéticos , Finlandia , Genética de Población , Genotipo , Humanos
13.
Am J Hum Genet ; 109(9): 1667-1679, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055213

RESUMEN

African populations are the most diverse in the world yet are sorely underrepresented in medical genetics research. Here, we examine the structure of African populations using genetic and comprehensive multi-generational ethnolinguistic data from the Neuropsychiatric Genetics of African Populations-Psychosis study (NeuroGAP-Psychosis) consisting of 900 individuals from Ethiopia, Kenya, South Africa, and Uganda. We find that self-reported language classifications meaningfully tag underlying genetic variation that would be missed with consideration of geography alone, highlighting the importance of culture in shaping genetic diversity. Leveraging our uniquely rich multi-generational ethnolinguistic metadata, we track language transmission through the pedigree, observing the disappearance of several languages in our cohort as well as notable shifts in frequency over three generations. We find suggestive evidence for the rate of language transmission in matrilineal groups having been higher than that for patrilineal ones. We highlight both the diversity of variation within Africa as well as how within-Africa variation can be informative for broader variant interpretation; many variants that are rare elsewhere are common in parts of Africa. The work presented here improves the understanding of the spectrum of genetic variation in African populations and highlights the enormous and complex genetic and ethnolinguistic diversity across Africa.


Asunto(s)
Variación Genética , Genética de Población , África Austral , Población Negra/genética , Estructuras Genéticas , Variación Genética/genética , Humanos
14.
BMC Genomics ; 25(1): 89, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254050

RESUMEN

Several indigenous cattle breeds in Sweden are endangered. Conservation of their genetic diversity and genomic characterization is a priority.Whole-genome sequences (WGS) with a mean coverage of 25X, ranging from 14 to 41X were obtained for 30 individuals of the breeds Fjällko, Fjällnära, Bohuskulla, Rödkulla, Ringamåla, and Väneko. WGS-based genotyping revealed 22,548,028 variants in total, comprising 18,876,115 single nucleotide polymorphisms (SNPs) and 3,671,913 indels. Out of these, 1,154,779 SNPs and 304,467 indels were novel. Population stratification based on roughly 19 million SNPs showed two major groups of the breeds that correspond to northern and southern breeds. Overall, a higher genetic diversity was observed in the southern breeds compared to the northern breeds. While the population stratification was consistent with previous genome-wide SNP array-based analyses, the genealogy of the individuals inferred from WGS based estimates turned out to be more complex than expected from previous SNP-array based estimates. Polymorphisms and their predicted phenotypic consequences were associated with differences in the coat color phenotypes between the northern and southern breeds. Notably, these high-consequence polymorphisms were not represented in SNP arrays, which are used routinely for genotyping of cattle breeds.This study is the first WGS-based population genetic analysis of Swedish native cattle breeds. The genetic diversity of native breeds was found to be high. High-consequence polymorphisms were linked with desirable phenotypes using whole-genome genotyping, which highlights the pressing need for intensifying WGS-based characterization of the native breeds.


Asunto(s)
Cruzamiento , Polimorfismo de Nucleótido Simple , Humanos , Animales , Bovinos/genética , Suecia , Secuenciación Completa del Genoma/veterinaria , Genómica
15.
BMC Genomics ; 25(1): 681, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982349

RESUMEN

Analyzing the genetic diversity and selection characteristics of sheep (Ovis aries) holds significant value in understanding their environmental adaptability, enhancing breeding efficiency, and achieving effective conservation and rational utilization of genetic resources. In this study, we utilized Illumina Ovine SNP 50 K BeadChip data from four indigenous sheep breeds from the southern margin of the Taklamakan Desert (Duolang sheep: n = 36, Hetian sheep: n = 74, Kunlun sheep: n = 27, Qira black sheep: n = 178) and three foreign meat sheep breeds (Poll Dorset sheep: n = 105, Suffolk sheep: n = 153, Texel sheep: n = 150) to investigate the population structure, genetic diversity, and genomic signals of positive selection within the indigenous sheep. According to the Principal component analysis (PCA), the Neighbor-Joining tree (NJ tree), and Admixture, we revealed distinct clustering patterns of these seven sheep breeds based on their geographical distribution. Then used Cross Population Extended Haplotype Homozygosity (XP-EHH), Fixation Index (FST), and Integrated Haplotype Score (iHS), we identified a collective set of 32 overlapping genes under positive selection across four indigenous sheep breeds. These genes are associated with wool follicle development and wool traits, desert environmental adaptability, disease resistance, reproduction, and high-altitude adaptability. This study reveals the population structure and genomic selection characteristics in the extreme desert environments of native sheep breeds from the southern edge of the Taklimakan Desert, providing new insights into the conservation and sustainable use of indigenous sheep genetic resources in extreme environments. Additionally, these findings offer valuable genetic resources for sheep and other mammals to adapt to global climate change.


Asunto(s)
Clima Desértico , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Ovinos/genética , Genética de Población , Haplotipos , Variación Genética , Cruzamiento
16.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840048

RESUMEN

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Asunto(s)
Variación Genética , Selección Genética , Secuenciación Completa del Genoma , Bovinos/genética , Animales , Secuenciación Completa del Genoma/métodos , Desequilibrio de Ligamiento , Genómica/métodos , Polimorfismo de Nucleótido Simple , Genoma , Genética de Población , Cruzamiento , Sitios de Carácter Cuantitativo , Fenotipo
17.
BMC Genomics ; 25(1): 558, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834950

RESUMEN

BACKGROUND: Indigenous Chinese cattle have abundant genetic diversity and a long history of artificial selection, giving local breeds advantages in adaptability, forage tolerance and resistance. The detection of selective sweeps and comparative genome analysis of selected breeds and ancestral populations provide a basis for understanding differences among breeds and for the identification and utilization of candidate genes. We investigated genetic diversity, population structure, and signatures of selection using genome-wide sequencing data for a new breed of Qinchuan cattle (QNC, n = 21), ancestral Qinchuan cattle (QCC, n = 20), and Zaosheng cattle (ZSC, n = 19). RESULTS: A population structure analysis showed that the ancestry components of QNC and ZSC were similar. In addition, the QNC and ZSC groups showed higher proportions of European taurine ancestry than that of QCC, and this may explain the larger body size of QNC, approaching that of European cattle under long-term domestication and selection. A neighbor-joining tree revealed that QCC individuals were closely related, whereas QNC formed a distinct group. To search for signatures of selection in the QNC genome, we evaluated nucleotide diversity (θπ), the fixation index (FST) and Tajima's D. Overlapping selective sweeps were enriched for one KEGG pathway, the apelin signaling pathway, and included five candidate genes (MEF2A, SMAD2, CAMK4, RPS6, and PIK3CG). We performed a comprehensive review of genomic variants in QNC, QCC, and ZSC using whole-genome sequencing data. QCC was rich in novel genetic diversity, while diversity in QNC and ZSC cattle was reduced due to strong artificial selection, with divergence from the original cattle. CONCLUSIONS: We identified candidate genes associated with production traits. These results support the success of selective breeding and can guide further breeding and resource conservation of Qinchuan cattle.


Asunto(s)
Variación Genética , Selección Genética , Animales , Bovinos/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple , Genética de Población , Estudio de Asociación del Genoma Completo , Genoma , Cruzamiento
18.
BMC Genomics ; 25(1): 522, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802792

RESUMEN

Assessing the genetic structure of local varieties and understanding their genetic data are crucial for effective management and preservation. However, the genetic differences among local breeds require further explanation. To enhance our understanding of their population structure and genetic diversity, we conducted a genome-wide comparative study of Chaohu and Ji'an Red ducks using genome sequence and restriction site-associated DNA sequencing technology. Our analysis revealed a distinct genetic distinction between the two breeds, leading to divided groups. The phylogenetic tree for Chaohu duck displayed two branches, potentially indicating minimal impact from artificial selection. Additionally, our ROH (runs of homozygosity) analysis revealed that Chaohu ducks had a lower average inbreeding coefficient than Ji'an Red ducks. We identified several genomic regions with high genetic similarity in these indigenous duck breeds. By conducting a selective sweep analysis, we identified 574 candidate genes associated with muscle growth (BMP2, ITGA8, MYLK, and PTCH1), fat deposits (ELOVL1 and HACD2), and pigmentation (ASIP and LOC101797494). These results offer valuable insights for the further enhancement and conservation of Chinese indigenous duck breeds.


Asunto(s)
Patos , Genoma , Selección Genética , Animales , Patos/genética , Filogenia , Genómica/métodos , Variación Genética , Polimorfismo de Nucleótido Simple , Cruzamiento
19.
BMC Genomics ; 25(1): 664, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961357

RESUMEN

BACKGROUND: Wheat landraces are considered a valuable source of genetic diversity for breeding programs. It is useful to evaluate the genetic diversity in breeding studies such as marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection. In addition, constructing a core germplasm set that represents the genetic diversity of the entire variety set is of great significance for the efficient conservation and utilization of wheat landrace germplasms. RESULTS: To understand the genetic diversity in wheat landrace, 2,023 accessions in the Jiangsu Provincial Crop Germplasm Resource Bank were used to explore the molecular diversity and population structure using the Illumina 15 K single nucleotide polymorphism (SNP) chip. These accessions were divided into five subpopulations based on population structure, principal coordinate and kinship analysis. A significant variation was found within and among the subpopulations based on the molecular variance analysis (AMOVA). Subpopulation 3 showed more genetic variability based on the different allelic patterns (Na, Ne and I). The M strategy as implemented in MStratv 4.1 software was used to construct the representative core collection. A core collection with a total of 311 accessions (15.37%) was selected from the entire landrace germplasm based on genotype and 12 different phenotypic traits. Compared to the initial landrace collections, the core collection displayed higher gene diversity (0.31) and polymorphism information content (PIC) (0.25), and represented almost all phenotypic variation. CONCLUSIONS: A core collection comprising 311 accessions containing 100% of the genetic variation in the initial population was developed. This collection provides a germplasm base for effective management, conservation, and utilization of the variation in the original set.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Triticum , Triticum/genética , China , Genética de Población , Fenotipo , Genotipo
20.
BMC Genomics ; 25(1): 193, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373904

RESUMEN

BACKGROUND: The application of biotechnologies which make use of genetic markers in chicken breeding is developing rapidly. Diversity Array Technology (DArT) is one of the current Genotyping-By-Sequencing techniques allowing the discovery of whole genome sequencing. In livestock, DArT has been applied in cattle, sheep, and horses. Currently, there is no study on the application of DArT markers in chickens. The aim was to study the effectiveness of DArTSeq markers in the genetic diversity and population structure of indigenous chickens (IC) and SASSO in the Eastern Province of Rwanda. METHODS: In total 87 blood samples were randomly collected from 37 males and 40 females of indigenous chickens and 10 females of SASSO chickens purposively selected from 5 sites located in two districts of the Eastern Province of Rwanda. Genotyping by Sequencing (GBS) using DArTseq technology was employed. This involved the complexity reduction method through digestion of genomic DNA and ligation of barcoded adapters followed by PCR amplification of adapter-ligated fragments. RESULTS: From 45,677 DArTseq SNPs and 25,444 SilicoDArTs generated, only 8,715 and 6,817 respectively remained for further analysis after quality control. The average call rates observed, 0.99 and 0.98 for DArTseq SNPs and SilicoDArTs respectively were quite similar. The polymorphic information content (PIC) from SilicoDArTs (0.33) was higher than that from DArTseq SNPs (0.22). DArTseq SNPs and SilicoDArTs had 34.4% and 34% of the loci respectively mapped on chromosome 1. DArTseq SNPs revealed distance averages of 0.17 and 0.15 within IC and SASSO chickens respectively while the respective averages observed with SilicoDArTs were 0.42 and 0.36. The average genetic distance between IC and SASSO chickens was moderate for SilicoDArTs (0.120) compared to that of DArTseq SNPs (0.048). The PCoA and population structure clustered the chicken samples into two subpopulations (1 and 2); 1 is composed of IC and 2 by SASSO chickens. An admixture was observed in subpopulation 2 with 12 chickens from subpopulation 1. CONCLUSIONS: The application of DArTseq markers have been proven to be effective and efficient for genetic relationship between IC and separated IC from exotic breed used which indicate their suitability in genomic studies. However, further studies using all chicken genetic resources available and large big sample sizes are required.


Asunto(s)
Pollos , Genómica , Masculino , Femenino , Animales , Bovinos , Caballos , Ovinos , Pollos/genética , Genotipo , Rwanda , Genómica/métodos , Polimorfismo de Nucleótido Simple , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA