Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2402116121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739803

RESUMEN

Pyrite is the most common sulfide mineral in hydrothermal ore-forming systems. The ubiquity and abundance of pyrite, combined with its ability to record and preserve a history of fluid evolution in crustal environments, make it an ideal mineral for studying the genesis of hydrothermal ore deposits, including those that host critical metals. However, with the exception of boiling, few studies have been able to directly link changes in pyrite chemistry to the processes responsible for bonanza-style gold mineralization. Here, we report the results of high-resolution secondary-ion mass spectrometry and electron microprobe analyses conducted on pyrite from the Brucejack epithermal gold deposit, British Columbia. Our δ34S and trace element results reveal that the Brucejack hydrothermal system experienced abrupt fluctuations in fluid chemistry, which preceded and ultimately coincided with the onset of ultra-high-grade mineralization. We argue that these fluctuations, which include the occurrence of extraordinarily negative δ34S values (e.g., -36.1‰) in zones of auriferous, arsenian pyrite, followed by sharp increases of δ34S values in syn-electrum zones of nonarsenian pyrite, were caused by vigorous, fault valve-induced episodic boiling (flashing) and subsequent inundation of the hydrothermal system by seawater. We conclude that the influx of seawater was the essential step to forming bonanza-grade electrum mineralization by triggering, through the addition of cationic flocculants and cooling, the aggregation of colloidal gold suspensions. Moreover, our study demonstrates the efficacy of employing high-resolution, in situ analytical techniques to map out individual ore-forming events in a hydrothermal system.

2.
Small ; : e2403576, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183525

RESUMEN

Lithium-sulfur batteries have emerged as a promising energy storage device due to ultra-high theoretical capacity, but the slow kinetics of sulfur and polysulfide shuttle hinder the batteries' further development. Here, the 10% cobalt-doped pyrite iron disulfide electrocatalyst deposited on acetylene black as a separator coating in lithium-sulfur batteries is reported. The adsorption rate to the intermediate Li2S6 is significantly improved while surface oxidation of FeS2 is inhibited: iron oxide and sulfate, thus avoiding FeS2 electrocatalyst deactivation. The electrocatalytic activity has been evaluated in terms of electronic resistivity, lithium-ion diffusion, liquid-liquid, and liquid-solid conversion kinetics. The coin batteries exhibit ultra-long cycle life at 1 C with an initial capacity of 854.7 mAh g-1 and maintained at 440.8 mAh g-1 after 920 cycles. Furthermore, the separator is applied to a laminated pouch battery with a sulfur mass of 326 mg (3.7 mg cm-2) and retained the capacity of 590 mAh g-1 at 0.1 C after 50 cycles. This work demonstrates that FeS2 electrocatalytic activity can be improved when Co-doped FeS2 suppresses surface oxidation and provides a reference for low-cost separator coating design in pouch batteries.

3.
Appl Environ Microbiol ; 90(7): e0086324, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38899885

RESUMEN

Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures ("py"') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various c- and b-type cytochromes was observed in "py," pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis. IMPORTANCE: Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet's history.


Asunto(s)
Procesos Autotróficos , Chromatiaceae , Hierro , Sulfuros , Azufre , Sulfuros/metabolismo , Azufre/metabolismo , Hierro/metabolismo , Chromatiaceae/metabolismo , Chromatiaceae/genética , Chromatiaceae/crecimiento & desarrollo , Electrones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fotosíntesis
4.
Environ Sci Technol ; 58(23): 10149-10161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808456

RESUMEN

Further reducing total nitrogen (TN) and total phosphorus (TP) in the secondary effluent needs to be realized effectively and in an eco-friendly manner. Herein, four pyrite/sawdust composite-based biofilters were established to treat simulated secondary effluent for 304 days. The results demonstrated that effluent TN and TP concentrations from biofilters under the optimal hydraulic retention time (HRT) of 3.5 h were stable at <2.0 and 0.1 mg/L, respectively, and no significant differences were observed between inoculated sludge sources. The pyrite/sawdust composite-based biofilters had low N2O, CH4, and CO2 emissions, and the effluent's DOM was mainly composed of five fluorescence components. Moreover, mixotrophic denitrifiers (Thiothrix) and sulfate-reducing bacteria (Desulfosporosinus) contributing to microbial nitrogen and sulfur cycles were enriched in the biofilm. Co-occurrence network analysis deciphered that Chlorobaculum and Desulfobacterales were key genera, which formed an obvious sulfur cycle process that strengthened the denitrification capacity. The higher abundances of genes encoding extracellular electron transport (EET) chains/mediators revealed that pyrite not only functioned as an electron conduit to stimulate direct interspecies electron transfer by flagella but also facilitated EET-associated enzymes for denitrification. This study comprehensively evaluates the water-gas-biofilm phases of pyrite/sawdust composite-based biofilters during a long-term study, providing an in-depth understanding of boosted electron transfer in pyrite-based mixotrophic denitrification systems.


Asunto(s)
Biopelículas , Desnitrificación , Nitratos , Fósforo , Fósforo/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Transporte de Electrón , Hierro , Sulfuros
5.
Environ Sci Technol ; 58(15): 6753-6762, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38526226

RESUMEN

Pharmaceutical residues in sediments are concerning as ubiquitous emerging contaminants. Pyrite is the most abundant sulfide minerals in the estuarine and coastal sediments, making it a major sink for pharmaceutical pollutants such as sulfamethoxazole (SMX). However, research on the adsorption and redox behaviors of SMX on the pyrite surface is limited. Here, we investigated the impact of the nonphotochemical process of pyrite on the fate of coexisting SMX. Remarkably, sulfur vacancies (SVs) on pyrite promoted the generation of nonradical species (hydrogen peroxide, H2O2 and singlet oxygen, 1O2), thereby exhibiting prominent SMX degradation performance under darkness. Nonradical 1O2 contributed approximately 73.1% of the total SMX degradation. The SVs with high surrounding electron density showed an advanced affinity for adsorbing O2 and then initiated redox reactions in the sediment electron-storing geobattery pyrite, resulting in the extensive generation of H2O2 through a two-electron oxygen reduction pathway. Surface Fe(III) (hydro)oxides on pyrite facilitated the decomposition of H2O2 to 1O2 generation. Distinct nonradical products were observed in all investigated estuarine and coastal samples with the concentrations of H2O2 ranging from 1.96 to 2.94 µM, while the concentrations of 1O2 ranged from 4.63 × 10-15 to 8.93 × 10-15 M. This dark-redox pathway outperformed traditional photochemical routes for pollutant degradation, broadening the possibilities for nonradical species use in estuarine and coastal sediments. Our study highlighted the SV-triggered process as a ubiquitous yet previously overlooked source of nonradical species, which offered fresh insights into geochemical processes and the dynamics of pollutants in regions of frequent redox oscillations and sulfur-rich sediments.


Asunto(s)
Contaminantes Ambientales , Hierro , Oxígeno Singlete , Compuestos Férricos/química , Sulfametoxazol , Peróxido de Hidrógeno , Sulfuros/química , Azufre , Oxidación-Reducción , Preparaciones Farmacéuticas
6.
Environ Sci Technol ; 58(25): 11128-11139, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857430

RESUMEN

Hydrogen sulfide (H2S), an environmentally harmful pollutant, is a byproduct of geothermal energy production. To reduce the H2S emissions, H2S-charged water is injected into the basaltic subsurface, where it mineralizes to iron sulfides. Here, we couple geophysical induced polarization (IP) measurements in H2S injection wells and geochemical reactive transport models (RTM) to monitor the H2S storage efforts in the subsurface of Nesjavellir, one of Iceland's most productive geothermal fields. An increase in the IP response after 40 days of injection indicates iron-sulfide formation near the injection well. Likewise, the RTM shows that iron sulfides readily form at circumneutral to alkaline pH conditions, and the iron supply from basalt dissolution limits its formation. Agreement in the trends of the magnitude and distribution of iron-sulfide formation between IP and RTM suggests that coupling the methods can improve the monitoring of H2S mineralization by providing insight into the parameters influencing iron-sulfide formation. In particular, accurate fluid flow parameters in RTMs are critical to validate the predictions of the spatial distribution of subsurface iron-sulfide formation over time obtained through IP observations. This work establishes a foundation for expanding H2S sequestration monitoring efforts and a framework for coupling geophysical and geochemical site evaluations in environmental studies.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/química , Monitoreo del Ambiente/métodos , Islandia , Hierro/química
7.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126104

RESUMEN

AIM: To assess the effectiveness of Bacillus subtilis strain LN8B as a biocollector for recovering pyrite (Py) and chalcopyrite (CPy) in both seawater (Sw) and deionized water (Dw), and to explore the underlying adhesion mechanism in these bioflotation experiments. MATERIALS AND METHODS: The bioflotation test utilized B. subtilis strain LN8B as the biocollector through microflotation experiments. Additionally, frother methyl isobutyl carbinol (MIBC) and conventional collector potassium amyl xanthate (PAX) were introduced in some experiments. The zeta potential (ZP) and Fourier-transform infrared spectroscopy (FTIR) was employed to explore the adhesion mechanism of Py and CPy interacting with the biocollector in Sw and Dw. The adaptability of the B. subtilis strain to different water types and salinities was assessed through growth curves measuring optical density. Finally, antibiotic susceptibility tests were conducted to evaluate potential risks of the biocollector. RESULTS: Superior outcomes were observed in Sw where Py and CPy recovery was ∼39.3% ± 7.7% and 41.1% ± 5.8%, respectively, without microorganisms' presence. However, B. subtilis LN8B potentiate Py and CPy recovery, reaching 72.8% ± 4.9% and 84.6% ± 1.5%, respectively. When MIBC was added, only the Py recovery was improved (89.4% ± 3.6%), depicting an adverse effect for CPy (81.8% ± 1.1%). ZP measurements indicated increased mineral surface hydrophobicity when Py and CPy interacted with the biocollector in both Sw and Dw. FTIR revealed the presence of protein-related amide peaks, highlighting the hydrophobic nature of the bacterium. The adaptability of this strain to diverse water types and salinities was assessed, demonstrating remarkable growth versatility. Antibiotic susceptibility tests indicated that B. subtilis LN8B was susceptible to 23 of the 25 antibiotics examined, suggesting it poses minimal environmental risks. CONCLUSIONS: The study substantiates the biotechnological promise of B. subtilis strain LN8B as an efficient sulfide collector for promoting cleaner mineral production. This effectiveness is attributed to its ability to induce mineral surface hydrophobicity, a result of the distinct characteristics of proteins within its cell wall.


Asunto(s)
Bacillus subtilis , Cobre , Hierro , Minerales , Bacillus subtilis/metabolismo , Agua de Mar , Sulfuros/farmacología , Sulfuros/metabolismo , Agua/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
8.
Environ Res ; 258: 119393, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857856

RESUMEN

Constructed wetlands have been widely employed as a cost-effective and environmentally friendly alternative for treating primary and secondary sewage effluents. In this study, biochar and pyrite were utilized as electron donor substrates in intermittent-aerated vertical flow constructed wetlands to strengthen the nutrient and heavy metals removal simultaneously, and the response of nutrient reduction and microbial community to heavy metals stress was also explored. The results indicated that biochar addition exhibited a better nitrogen removal, while pyrite addition greatly promoted the phosphorus removal. Moreover, the high removal efficiencies of Cu2+, Pb2+ and Cd2+ (above 90%) except for Zn2+ were obtained in each system. However, the exposure of heavy metals decreased phosphorus removal while had little effect on nitrogen removal. The influent load and intermittent aeration implementation led to a significant shift in microbial community structures, but microbial biodiversity and abundance decreased under the exposure of heavy metals. Particularly, Thiobacillus and Ferritrophicum, associated with sulfur autotrophic denitrification and iron autotrophic denitrification, were more abundant in pyrite-based wetland systems.


Asunto(s)
Carbón Orgánico , Hierro , Metales Pesados , Sulfuros , Humedales , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Fósforo , Nitrógeno/metabolismo
9.
Environ Res ; 262(Pt 2): 119926, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276826

RESUMEN

Global climate change and rapid urbanization have resulted in more frequent and intense rainfall events in urban areas, raising concerns about the effectiveness of stormwater bioretention systems. In this study, we optimized the design by constructing a multi-layer filler structure, including plant layer, biochar layer, and pyrite layer, and evaluated its performance in nitrogen (N) and phosphorus (P) removal under different temperatures (5-18 °C and 24-43 °C), rainfall intensity (47.06 mm rainfall depth), and frequency (1-5 days rainfall intervals) conditions. The findings indicate that over 775 days, the plant system consistently removed 62.3% of total nitrogen (TN) and 97.0% of total phosphorus (TP) from 103 intense rainfall events. Temperature fluctuations had minimal impact on nitrate nitrogen (NO3--N) and TP removal, with differences in removal rates of only 1.0% and 0.6%, respectively, among plant groups. Across the multi-layer structure, plant roots mitigated the impact of temperature differences on NO3--N removal, while high-frequency rainfall fluctuated the stability of NO3--N removal. Dense plant roots reinforced N and P removal by facilitating denitrification in the vadose zone (biochar) and strengthening denitrification processes. Biochar and pyrite contributed to stable microenvironments and diverse ecological functions, enhancing NO3--N and PO43- removal. In summary, the synergistic effects of the multi-layer filler structure improved and stabilized N and P removal, providing valuable insights for addressing runoff pollution in bioretention systems amidst rapid urbanization and climate change challenges.

10.
Environ Res ; 251(Pt 2): 118198, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220084

RESUMEN

TCP (3,5,6-trichloro-2-pyridinol), the main recalcitrant degradation product of chlorpyrifos, poses a high risk to human health and ecological systems. This study provided a comprehensive exploration of the pyrite-activated persulfate (PS) system for the removal of TCP in water and placed particular emphasis on the pyrite oxidation process that releases Fe. The results showed that the pyrite-activated PS system can completely degrade TCP within 300 min at 5.0 mmol/L PS and 1000 mg/L pyrite at 25 °C, wherein small amounts of PS (1 mmol/L) can effectively facilitate TCP removal and the oxidation of pyrite elements, while excessive PS (>20 mmol/L) can lead to competitive inhibitory effects, especially in the Fe release process. Aimed at the dual effects, the evident positive correlation (R2 > 0.90) between TCP degradation (kTCP) and Fe element release (kFe), but the value of k (0.00237) in the pyrite addition variable experiment was less than that in the PS experiment (k = 0.00729), further indicating that the inhibition effect of excessive addition consists of PS but not notably pyrite. Moreover, the predominant free radicals and non-free radicals produced in the pyrite/PS system were tested, with the order of significance being •OH < Fe (Ⅳ) < SO4•- < â€¢O2- < 1O2, wherein 1O2 emerged as the principal player in both TCP degradation and Fe release from the pyrite oxidation process. Additionally, CO32- can finitely activate PS but generally slows TCP degradation and inhibit pyrite oxidation releasing Fe process. This study provides a theoretical basis for the degradation of TCP using pyrite-activated PS.


Asunto(s)
Hierro , Oxidación-Reducción , Sulfatos , Sulfuros , Contaminantes Químicos del Agua , Hierro/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Sulfatos/química , Purificación del Agua/métodos
11.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561739

RESUMEN

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Asunto(s)
Neoplasias Óseas , Nanopartículas , Neoplasias , Osteosarcoma , Sulfuros , Humanos , Terapia Fototérmica , Osteosarcoma/tratamiento farmacológico , Hierro , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Peróxido de Hidrógeno
12.
J Environ Manage ; 351: 119954, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169252

RESUMEN

Bioleaching technologies have been shown to be an environmentally friendly and economically beneficial tool for extracting metals from spent lithium-ion batteries (LIBs). However, conventional bioleaching methods have exhibited low efficiency in recovering metals from spent LIBs. Therefore, relied on the sustainability principle of using waste to treat waste, this study employed pyrite (FeS2) as an energy substance with reducing properties and investigated its effects in combination with elemental sulfur (S0) or FeSO4 on metals bioleaching from spent LIBs. Results demonstrated that the bioleaching efficiency was significantly higher in the leaching system constructed with FeS2 + S0, than in the FeS2 + FeSO4 or FeS2 system. When the pulp densities of FeS2, S0 and spent LIBs were 10 g L-1, 5 g L-1 and 10 g L-1, respectively, the leaching efficiency of Li, Ni, Co and Mn all reached 100%. Mechanistic analysis reveals that in the FeS2 + S0 system, the activity and acid-producing capabilities of iron-sulfur oxidizing bacteria were enhanced, promoting the generation of Fe (Ⅱ) and reducible sulfur compounds. Simultaneously, bio-acids were shown to disrupt the structure of the LIBs, thereby increasing the contact area between Fe (Ⅱ) and sulfur compounds containing high-valence metals. This effectively promoted the reduction of high-valence metals, thereby enhancing their leaching efficiency. Overall, the FeS2 + S0 bioleaching process constructed in this study, improved the leaching efficiency of LIBs while also effectively utilizing waste, providing technical support for the comprehensive and sustainable management of solid waste.


Asunto(s)
Hierro , Litio , Sulfuros , Litio/química , Metales , Azufre , Compuestos de Azufre , Suministros de Energía Eléctrica , Reciclaje
13.
J Environ Manage ; 366: 121718, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971064

RESUMEN

Pyrite (FeS2) has garnered attention due to its narrow bandgap, high light absorption, and low cost. However, the rapid recombination of charge carriers hinders its practical application. Surface electric field is a unique characteristic of tourmaline, which can induce effective separation of photo generated electrons and holes. This study successfully combined two directly mined natural minerals, tourmaline and pyrite, to form TFS. Characterization and experiments show that the surface electric field of tourmaline can significantly enhance the photocatalytic activity of TFS. Tetracycline (TC, 50 ppm) was degraded by 95% with 60 min, and the TFS reaction rate constant reached 0.0439 min-1, which is 6.1 times and 17.3 times higher than that of tourmaline and FeS2. Additionally, it significantly improved light absorption and charge carrier separation capabilities. After simulating various natural environmental factors, TFS demonstrated practicality. Considered analysis of active substances and detection revealed that h+ and 1O2 radicals are significant contributors, and the photocatalytic mechanism was proposed. Furthermore, the transformation pathways and toxicity of metabolites were studied. This research offers further inspiration and insights for improving photocatalytic material performance and the green governance environment of natural resources.


Asunto(s)
Antibacterianos , Catálisis , Antibacterianos/química , Minerales/química , Tetraciclina/química , Hierro , Sulfuros
14.
J Environ Manage ; 365: 121607, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941847

RESUMEN

The development of a natural pyrite/peroxymonosulfate (PMS) system for the removal of antibiotic contamination from water represented an economic and green sustainable strategy. Yet, a noteworthy knowledge gap remained considering the underlying reaction mechanism of the system, particularly in relation to its pH sensitivity. Herein, this paper investigated the impacts of critical reaction parameters and initial pH levels on the degradation of sulfadiazine (SDZ, 3 mg/L) in the pyrite/PMS system, and elucidated the pH dependence of the reaction mechanism. Results showed that under optimal conditions, SDZ could be completely degraded within 5 min at a broad pH range of 3.0-9.0, with a pseudo-first-order reaction rate of >1.0 min-1. The low or high PMS doses could lower degradation rates of SDZ through the decreased levels of active species, while the amount of pyrite was positively correlated with the removal rate of SDZ. The diminutive concentrations of anions exerted minor impacts on the decomposition of SDZ within the pyrite PMS system. Mechanistic results demonstrated that the augmentation of pH levels facilitated the transition from the non-radical to the radical pathway within the natural pyrite/PMS system, while concurrently amplifying the role of •OH in the degradation process of SDZ. This could be attributed to the change in interface electrostatic repulsion induced by pH fluctuations, as well as the mutual transformation between active species. The stable presence of the relative content of Fe(II) in the used pyrite was ensured owing to the reduced sulfur species acting as electron donors, providing the pyrite/PMS system excellent reusability. This paper sheds light on the mechanism regulation of efficient removal of organic pollutants through pyrite PMS systems, contributing to practical application.


Asunto(s)
Sulfadiazina , Sulfadiazina/química , Concentración de Iones de Hidrógeno , Hierro/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Peróxidos
15.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893538

RESUMEN

Protocell models play a pivotal role in the exploration of the origin of life. Vesicles are one type of protocell model that have attracted much attention. Simple single-chain amphiphiles (SACs) and organic small molecules (OSMs) possess primitive relevance and were most likely the building blocks of protocells on the early Earth. OSM@SAC vesicles have been considered to be plausible protocell models. Pyrite (FeS2), a mineral with primitive relevance, is ubiquitous in nature and plays a crucial role in the exploration of the origin of life in the mineral-water interface scenario. "How do protocell models based on OSM@SAC vesicles interact with a mineral-water interface scenario that simulates a primitive Earth environment" remains an unresolved question. Hence, we select primitive relevant sodium monododecyl phosphate (SDP), isopentenol (IPN) and pyrite (FeS2) mineral particles to build a protocell model. The model investigates the basic physical and chemical properties of FeS2 particles and reveals the effects of the size, content and duration of interaction of FeS2 particles on IPN@SDP vesicles. This deepens the understanding of protocell growth mechanisms in scenarios of mineral-water interfaces in primitive Earth environments and provides new information for the exploration of the origin of life.

16.
Molecules ; 29(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893393

RESUMEN

Despite being a major cyanide species in the process water, it is unclear how iron cyanide influences pyritic gold ore flotation as well as how lead ions influence pyritic gold ore flotation in the presence of iron cyanide. This study aims at revealing the interaction of Fe(CN)63- and lead ions in pyrite flotation to investigate the strong depressing effect of Fe(CN)63- on pyritic gold ore flotation and the significant activating effect of lead ions on pyritic gold ore flotation in the presence of Fe(CN)63- using flotation, zeta potential measurement and surface analysis methods. The flotation results showed that upon 5 × 10-5 mol/L Fe(CN)63- addition, pyrite recovery drastically decreased from about 51.3% to 8.6%, while the subsequent addition of 9.5 × 10-4 mol/L lead ions significantly activated pyrite with the recovery increasing from 8.6% to 91%, which demonstrated that Fe(CN)63- strongly depressed pyrite flotation, while lead ions completely activated pyrite in the presence of Fe(CN)63-. Zeta potential measurement, surface analysis using Cryogenic X-ray photoelectron spectroscopy (Cryo-XPS) and electrochemical impedance spectroscopy (EIS) revealed that Fe(CN)63- depression was attributed to the chemical adsorption of Fe(CN)63- on iron sites of pyrite as Prussian Blue (Fe[Fe(CN)6]); however, this hydrophilic layer could be covered totally by lead ions which adsorbed on as lead hydroxide/oxide through electrostatic interactions, which resulted in the significant activation effect of lead ions. The results from this study will lead to improved flotation of gold associated with pyrite in gold flotation plants.

17.
Environ Geochem Health ; 46(2): 60, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280088

RESUMEN

Acid mine drainage (AMD) has resulted in significant risks to both human health and the environment of the Han River watershed. In this study, water and sediment samples from typical mine adits were selected to investigate the hydrogeochemical characteristics and assess the environmental impacts of AMD. The interactions between coexisting chemical factors, geochemical processes in the mine adit, and the causes of AMD formation are discussed based on statistical analysis, mineralogical analysis, and geochemical modeling. The results showed that the hydrochemical types of AMD consisted of SO4-Ca-Mg, SO4-Ca, and SO4-Mg, with low pH and extremely high concentrations of Fe and SO42-. The release behaviors of most heavy metals are controlled by the oxidation of sulfide minerals (mainly pyrite) and the dissolution/precipitation of secondary minerals. Along the AMD pathway in the adit, the species of Fe-hydroxy secondary minerals tend to initially increase and later decrease. The inverse model results indicated that (1) oxidative dissolution of sulfide minerals, (2) interconversion of Fe-hydroxy secondary minerals, (3) precipitation of gypsum, and (4) neutralization by calcite are the main geochemical reactions in the adit, and chlorite might be the major neutralizing mineral of AMD with calcite. Furthermore, there were two sources of AMD in abandoned mine adits: oxidation of pyrite within the adits and infiltration of AMD from the overlying waste rock dumps. The findings can provide deeper insight into hydrogeochemical processes and the formation of AMD contamination produced in abandoned mine adits under similar mining and hydrogeological conditions.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sulfuros/análisis , Minerales/análisis , Ríos , Carbonato de Calcio/análisis
18.
Environ Monit Assess ; 196(4): 354, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466524

RESUMEN

Natural pyrite (NP) is an alternative catalyst for wastewater purification via advanced oxidation processes (AOPs). However, the activation performance and mechanism of periodate (PI) by NP have not yet been revealed. Herein, this work examines the activation performance of NP towards PI and its application in the degradation of antibiotic wastewater. Interestingly, 95.69% of chlortetracycline (CTC) was degraded by NP within 20 min via PI activation. Besides, NP shows effective degradation of various pollutants such as rhodamine B (65.81%), sulfamethoxazole (89.04%), and sodium butylxanthate (99.77%) within 20 min. The active species quenching experiment suggested that the active species ∙ OH , IO 3 ∙ , 1O2 and the active complex of PI bonded with NP surface participated in CTC degradation. In addition, Fe(II) on NP surface is the main active site for PI activation, while Sn2- species accelerates the reduction of Fe(III) to Fe(II) and promotes sustained PI activation. This work provides new ideas for the application of NP in environmental pollution control.


Asunto(s)
Clortetraciclina , Hierro , Ácido Peryódico , Sulfuros , Contaminantes Químicos del Agua , Compuestos Férricos , Monitoreo del Ambiente , Clortetraciclina/química , Oxidación-Reducción , Compuestos Ferrosos , Contaminantes Químicos del Agua/análisis
19.
Environ Monit Assess ; 196(2): 123, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194202

RESUMEN

Regular monitoring of Acid Mine Drainage (AMD) is essential for understanding its extent and impact on water resources. Traditional manual sampling methods have limitations, such as limited representativeness and delayed lab analysis. High-frequency monitoring offers an alternative, enabling real-time analysis of AMD fluctuations and determination of constituents in the field. This study assessed a decade-long environmental monitoring database from watersheds impacted by coal mining in Brazil to analyze the relationships between physical properties and constituents from different water sources affected by AMD. Samples were grouped into four categories based on location and contamination levels. Results revealed that water samples from the two groups not affected by AMD exhibited near-neutral pH, low metal and sulfate concentrations, and a large portion of samples below the quantification limit for Mn and Al. In contrast, samples from groups affected by AMD displayed high metal and sulfate concentrations and acidic pH, with the highest contamination observed in the underground mine discharges group (AMD UMD). Spearman correlation analyzes between field (pH and electrical conductivity (EC)) and lab (SO42-, Fe, Mn, and Al) parameters showed no significant correlations in non-AMD-affected groups, but significant correlations in AMD-affected groups, particularly the Streams group. A regression model between sulfate and EC was identified as the best predictor for AMD, enabling continuous, low-cost monitoring of contaminated streams and providing insight into previously unobserved AMD processes, such as variations in contamination during storm events and river flushing.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Brasil , Sulfatos , Agua
20.
J Comput Chem ; 44(32): 2486-2500, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37650712

RESUMEN

The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA