Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Saudi Pharm J ; 28(12): 1605-1615, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424253

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease that involves demyelination of axons in the central nervous system (CNS) and affects patients worldwide. It has been demonstrated that ligand-activated aryl hydrocarbon receptor (Ahr) ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of MS, by increasing CD4+FoxP3+ T cells. Recent evidence indicates that AT-rich interactive domain-containing protein 5a (Arid5a) is required for EAE pathogenesis by stabilizing Il6 and OX40 mRNAs. However, the differential modulation of Ahr and Arid5a in autoimmunity as a therapeutic strategy is unexplored. Herein, an in silico, in vitro and in vivo approach identified Flavipin (3,4,5-trihydroxy-6-methylphthalaldehyde) as an Ahr agonist that induces the expression of Ahr downstream genes in mouse CD4+ T cells and CD11b+ macrophages. Interestingly, Flavipin inhibited the stabilizing function of Arid5a and its counteracting effects on Regnase-1 on the 3' untranslated region (3'UTR) of target mRNAs. Furthermore, it inhibited the stabilizing function of Arid5a on Il23a 3'UTR, a newly identified target mRNA. In EAE, Flavipin ameliorated disease severity, with reduced CD4+IL-17+ T cells, IL-6 and TNF-α and increased CD4+FoxP3+ T cells. Moreover, EAE amelioration was concomitant with reduced CD4+OX40+ and CD4+CD45+ T cells in the CNS. RNA interference showed that the modulatory effects of Flavipin on pro- and anti-inflammatory mediators in CD4+ T cells and macrophages were Ahr- and/or Arid5a-dependent. In conclusion, our findings reveal differential modulation of Ahr and Arid5a as a new therapeutic strategy for MS.

2.
RNA Biol ; 12(6): 597-602, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25892335

RESUMEN

Alternative pre-mRNA processing greatly increases the coding capacity of the human genome and regulatory factors involved in RNA processing play critical roles in tissue development and maintenance. Indeed, abnormal functions of RNA processing factors have been associated with a wide range of human diseases from cancer to neurodegenerative disorders. While many studies have emphasized the importance of alternative splicing (AS), recent high-throughput sequencing efforts have also allowed global surveys of alternative polyadenylation (APA). For the majority of pre-mRNAs, as well as some non-coding transcripts such as lncRNAs, APA selects different 3'-ends and thus modulates the availability of regulatory sites recognized by trans-acting regulatory effectors, including miRs and RNA binding proteins (RBPs). Here, we compare the available technologies for assessing global polyadenylation patterns, summarize the roles of auxiliary factors on APA, and discuss the impact of differential polyA site (pA) selection in the determination of cell fate, transformation and disease.


Asunto(s)
Poliadenilación , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Animales , Enfermedad/genética , Regulación de la Expresión Génica , Humanos , Proteínas de Unión al ARN/metabolismo
3.
RNA Biol ; 12(3): 354-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826667

RESUMEN

The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of ß-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5' and 3' UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5' and 3' UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3' terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2.


Asunto(s)
Secuencia de Bases , Caseínas/genética , Codón/metabolismo , Leche/química , Biosíntesis de Proteínas , Eliminación de Secuencia , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Caseínas/biosíntesis , Bovinos , Sistema Libre de Células/metabolismo , Codón/química , Femenino , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Polirribosomas/genética , Polirribosomas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética
4.
Biomol NMR Assign ; 17(1): 37-41, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36539586

RESUMEN

Heterogeneous ribonuclear protein A18 (hnRNP A18) is an RNA binding protein (RBP) involved in the hypoxic cellular stress response and regulation of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in melanoma, breast cancer, prostate cancer, and colon cancer solid tumors. hnRNP A18 is comprised of an N-terminal structured RNA recognition motif (RMM) and a C-terminal intrinsically disordered domain (IDD). Upon cellar stressors, such as UV and hypoxia, hnRNP A18 is phosphorylated by casein kinase 2 (CK2) and glycogen synthase kinase 3ß (GSK-3ß). After phosphorylation, hnRNP A18 translocates from the nucleus to the cytosol where it interacts with pro-survival mRNA transcripts for proteins such as hypoxia inducible factor 1α and CTLA-4. Both the hypoxic cellular response and modulation of immune checkpoints by cancer cells promote chemoradiation resistance and metastasis. In this study, the 1 H, 13 C, and 15 N backbone and sidechain resonances of the 172 amino acid hnRNP A18 were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies toward targeting hnRNP A18. These data will also enable the investigation of the dynamic structural changes within the IDD of hnRNP A18 upon phosphorylation by CK2 and GSK-3ß to provide critical insight into the structure and function of IDDs.


Asunto(s)
Proteínas Portadoras , Ribonucleoproteínas Nucleares Heterogéneas , Masculino , Humanos , ARN Mensajero/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Antígeno CTLA-4/metabolismo , Proteínas Portadoras/metabolismo , Resonancia Magnética Nuclear Biomolecular , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Unión Proteica
5.
J Bone Oncol ; 39: 100474, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36936386

RESUMEN

Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.

6.
Cell Surf ; 8: 100074, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35097244

RESUMEN

Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.

7.
JHEP Rep ; 4(2): 100413, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35036887

RESUMEN

Hepatocellular carcinoma and cholangiocarcinoma are the most common primary liver tumours, whose incidence and associated mortality have increased over recent decades. Liver cancer is often diagnosed late when curative treatments are no longer an option. Characterising new molecular determinants of liver carcinogenesis is crucial for the development of innovative treatments and clinically relevant biomarkers. Recently, circular RNAs (circRNAs) emerged as promising regulatory molecules involved in cancer onset and progression. Mechanistically, circRNAs are mainly known for their ability to sponge and regulate the activity of microRNAs and RNA-binding proteins, although other functions are emerging (e.g. transcriptional and post-transcriptional regulation, protein scaffolding). In liver cancer, circRNAs have been shown to regulate tumour cell proliferation, migration, invasion and cell death resistance. Their roles in regulating angiogenesis, genome instability, immune surveillance and metabolic switching are emerging. Importantly, circRNAs are detected in body fluids. Due to their circular structure, circRNAs are often more stable than mRNAs or miRNAs and could therefore serve as promising biomarkers - quantifiable with high specificity and sensitivity through minimally invasive methods. This review focuses on the role and the clinical relevance of circRNAs in liver cancer, including the development of innovative biomarkers and therapeutic strategies.

8.
Comput Struct Biotechnol J ; 20: 6182-6191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420152

RESUMEN

Gemin5 is a multifunctional RNA binding protein (RBP) organized in domains with a distinctive structural organization. The protein is a hub for several protein networks performing diverse RNA-dependent functions including regulation of translation, and recognition of small nuclear RNAs (snRNAs). Here we sought to identify the presence of phosphoresidues on the C-terminal half of Gemin5, a region of the protein that harbors a tetratricopeptide repeat (TPR)-like dimerization domain and a non-canonical RNA binding site (RBS1). We identified two phosphoresidues in the purified protein: P-T897 in the dimerization domain and P-T1355 in RBS1. Replacing T897 and T1355 with alanine led to decreased translation, and mass spectrometry analysis revealed that mutation T897A strongly abrogates the association with cellular proteins related to the regulation of translation. In contrast, the phosphomimetic substitutions to glutamate partially rescued the translation regulatory activity. The structural analysis of the TPR dimerization domain indicates that local rearrangements caused by phosphorylation of T897 affect the conformation of the flexible loop 2-3, and propagate across the dimerization interface, impacting the position of the C-terminal helices and the loop 12-13 shown to be mutated in patients with neurological disorders. Computational analysis of the potential relationship between post-translation modifications and currently known pathogenic variants indicates a lack of overlapping of the affected residues within the functional domains of the protein and provides molecular insights for the implication of the phosphorylated residues in translation regulation.

9.
Matrix Biol Plus ; 11: 100060, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34435179

RESUMEN

In the extracellular matrix (ECM), the glycosaminoglycan (GAG) hyaluronan (HA) has different physiological roles favouring hydration, elasticity and cell survival. Three different isoforms of HA synthases (HAS1, 2, and 3) are responsible for the production of HA. In several pathologies the upregulation of HAS enzymes leads to an abnormal HA accumulation causing cell dedifferentiation, proliferation and migration thus favouring cancer progression, fibrosis and vascular wall thickening. An intriguing new player in HAS2 gene expression regulation and HA production is the long non-coding RNA (lncRNA) hyaluronan synthase 2 antisense 1 (HAS2-AS1). A significant part of mammalian genomes corresponds to genes that transcribe lncRNAs; they can regulate gene expression through several mechanisms, being involved not only in maintaining the normal homeostasis of cells and tissues, but also in the onset and progression of different diseases, as demonstrated by the increasing number of studies published through the last decades. HAS2-AS1 is no exception: it can be localized both in the nucleus and in the cytosol, regulating cancer cells as well as vascular smooth muscle cells behaviour.

10.
Cytokine X ; 3(1): 100049, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33604565

RESUMEN

T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.

11.
Comput Struct Biotechnol J ; 19: 910-928, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33598105

RESUMEN

Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.

12.
Nucleus ; 5(6): 508-19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484187

RESUMEN

Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3'-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3'-untranslated region. The variable lengths of the 3' untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3'-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3' end formation.


Asunto(s)
Regiones no Traducidas 3'/genética , Enfermedades Genéticas Congénitas/genética , Poliadenilación/genética , ARN Mensajero/genética , Regulación del Desarrollo de la Expresión Génica , Enfermedades Genéticas Congénitas/patología , Humanos , Poli A/genética , Estabilidad del ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA