Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026414

RESUMEN

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata , Microglía/fisiología , Infecciones por Virus ARN/inmunología , Virus ARN/fisiología , Animales , Barrera Hematoencefálica , Encéfalo/virología , Humanos , Inflamación Neurogénica , Neuroinmunomodulación
2.
Cell ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39389057

RESUMEN

Current metagenomic tools can fail to identify highly divergent RNA viruses. We developed a deep learning algorithm, termed LucaProt, to discover highly divergent RNA-dependent RNA polymerase (RdRP) sequences in 10,487 metatranscriptomes generated from diverse global ecosystems. LucaProt integrates both sequence and predicted structural information, enabling the accurate detection of RdRP sequences. Using this approach, we identified 161,979 potential RNA virus species and 180 RNA virus supergroups, including many previously poorly studied groups, as well as RNA virus genomes of exceptional length (up to 47,250 nucleotides) and genomic complexity. A subset of these novel RNA viruses was confirmed by RT-PCR and RNA/DNA sequencing. Newly discovered RNA viruses were present in diverse environments, including air, hot springs, and hydrothermal vents, with virus diversity and abundance varying substantially among ecosystems. This study advances virus discovery, highlights the scale of the virosphere, and provides computational tools to better document the global RNA virome.

3.
Cell ; 186(22): 4834-4850.e23, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37794589

RESUMEN

Regulation of viral RNA biogenesis is fundamental to productive SARS-CoV-2 infection. To characterize host RNA-binding proteins (RBPs) involved in this process, we biochemically identified proteins bound to genomic and subgenomic SARS-CoV-2 RNAs. We find that the host protein SND1 binds the 5' end of negative-sense viral RNA and is required for SARS-CoV-2 RNA synthesis. SND1-depleted cells form smaller replication organelles and display diminished virus growth kinetics. We discover that NSP9, a viral RBP and direct SND1 interaction partner, is covalently linked to the 5' ends of positive- and negative-sense RNAs produced during infection. These linkages occur at replication-transcription initiation sites, consistent with NSP9 priming viral RNA synthesis. Mechanistically, SND1 remodels NSP9 occupancy and alters the covalent linkage of NSP9 to initiating nucleotides in viral RNA. Our findings implicate NSP9 in the initiation of SARS-CoV-2 RNA synthesis and unravel an unsuspected role of a cellular protein in orchestrating viral RNA production.


Asunto(s)
COVID-19 , ARN Viral , Humanos , COVID-19/metabolismo , Endonucleasas/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral
4.
Cell ; 185(21): 4023-4037.e18, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36174579

RESUMEN

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.


Asunto(s)
Bacteriófagos , Virus ARN , Bacteriófagos/genética , ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral , Filogenia , ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Viroma
5.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33743211

RESUMEN

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Asunto(s)
Interacciones Huésped-Patógeno , ARN Viral/genética , SARS-CoV-2/genética , Animales , COVID-19/virología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Genoma Viral , Humanos , Pulmón/virología , Masculino , Espectrometría de Masas , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/ultraestructura , Células Vero
6.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33188777

RESUMEN

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Asunto(s)
Biosíntesis de Proteínas , Virus ARN/fisiología , Replicación Viral/fisiología , Línea Celular Tumoral , Supervivencia Celular , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Transporte de ARN , ARN Viral/genética , Reproducibilidad de los Resultados , Imagen Individual de Molécula , Factores de Tiempo
7.
Cell ; 167(4): 1088-1098.e6, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814506

RESUMEN

The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.


Asunto(s)
Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , África Occidental/epidemiología , Sustitución de Aminoácidos , Animales , Callithrix , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cheirogaleidae , Citoplasma/virología , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Conformación Proteica en Hélice alfa , Proteínas del Envoltorio Viral/metabolismo , Virión/química , Virión/patogenicidad , Virulencia
8.
Mol Cell ; 81(3): 584-598.e5, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33444546

RESUMEN

Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across ß-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.


Asunto(s)
COVID-19 , Genoma Viral , Conformación de Ácido Nucleico , ARN Viral , Elementos de Respuesta , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , Línea Celular Tumoral , Humanos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
9.
Mol Cell ; 81(6): 1187-1199.e5, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33581076

RESUMEN

Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-ß production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-ß induction, prompting a negative feedback regulatory mechanism that represses IFN-ß expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.


Asunto(s)
Factor 4E Eucariótico de Iniciación/inmunología , Inmunidad Innata , MicroARNs/inmunología , Biosíntesis de Proteínas/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Animales , Factor 4E Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Interferón beta/genética , Interferón beta/inmunología , Ratones , Ratones Transgénicos , MicroARNs/genética , Infecciones por Virus ARN/genética , Virus ARN/genética
10.
Mol Cell ; 78(4): 624-640.e7, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32380061

RESUMEN

The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Acido Graso Sintasa Tipo I/metabolismo , Genoma Viral , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral , Animales , Fiebre Chikungunya/genética , Fiebre Chikungunya/metabolismo , Chlorocebus aethiops , Acido Graso Sintasa Tipo I/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Células Vero
11.
Trends Genet ; 40(8): 681-693, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38724328

RESUMEN

Positive-strand RNA [(+)RNA] viruses include pandemic SARS-CoV-2, tumor-inducing hepatitis C virus, debilitating chikungunya virus (CHIKV), lethal encephalitis viruses, and many other major pathogens. (+)RNA viruses replicate their RNA genomes in virus-induced replication organelles (ROs) that also evolve new viral species and variants by recombination and mutation and are crucial virus control targets. Recent cryo-electron microscopy (cryo-EM) reveals that viral RNA replication proteins form striking ringed 'crowns' at RO vesicle junctions with the cytosol. These crowns direct RO vesicle formation, viral (-)RNA and (+)RNA synthesis and capping, innate immune escape, and transfer of progeny (+)RNA genomes into translation and encapsidation. Ongoing studies are illuminating crown assembly, sequential functions, host factor interactions, etc., with significant implications for control and beneficial uses of viruses.


Asunto(s)
Genoma Viral , Orgánulos , ARN Viral , Replicación Viral , Replicación Viral/genética , Humanos , Genoma Viral/genética , Orgánulos/virología , Orgánulos/genética , Orgánulos/ultraestructura , ARN Viral/genética , Virus ARN Monocatenarios Positivos/genética , Microscopía por Crioelectrón , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Ensamble de Virus/genética , Compartimentos de Replicación Viral , Animales
12.
Immunity ; 49(3): 438-448.e5, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30193849

RESUMEN

Recognition of viral RNA by the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) initiates innate antiviral immune response. How the binding of viral RNA to and activation of the RLRs are regulated remains enigmatic. In this study, we identified ZCCHC3 as a positive regulator of the RLRs including RIG-I and MDA5. ZCCHC3 deficiency markedly inhibited RNA virus-triggered induction of downstream antiviral genes, and ZCCHC3-deficient mice were more susceptible to RNA virus infection. ZCCHC3 was associated with RIG-I and MDA5 and functions in two distinct processes for regulation of RIG-I and MDA5 activities. ZCCHC3 bound to dsRNA and enhanced the binding of RIG-I and MDA5 to dsRNA. ZCCHC3 also recruited the E3 ubiquitin ligase TRIM25 to the RIG-I and MDA5 complexes to facilitate its K63-linked polyubiquitination and activation. Thus, ZCCHC3 is a co-receptor for RIG-I and MDA5, which is critical for RLR-mediated innate immune response to RNA virus.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Infecciones por Virus ARN/inmunología , Virus ARN/fisiología , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , ARN Viral/inmunología , Proteínas de Unión al ARN/genética , Células THP-1 , Factores de Transcripción/metabolismo , Ubiquitinación
13.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483998

RESUMEN

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Asunto(s)
Ascomicetos , Virus Fúngicos , Malus , Micosis , Virus ARN , Ascomicetos/genética , Virus ARN/genética , Enfermedades de las Plantas/microbiología , Malus/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(6): e2321419121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289959

RESUMEN

The NOD-like receptor (NLR) family pyrin domain containing 6 (NLRP6) serves as a sensor for microbial dsRNA or lipoteichoic acid (LTA) in intestinal epithelial cells (IECs), and initiating multiple pathways including inflammasome pathway and type I interferon (IFN) pathway, or regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. NLRP6 can exert its function in both inflammasome-dependent and inflammasome-independent manners. However, there is no tool to distinguish the contribution of individual NLRP6-mediated pathway to the physiology and pathology in vivo. Here, we validated that Arg39 and Trp50 residues in the pyrin domain (PYD) of murine NLRP6 are required for ASC recruitment and inflammasome activation, but are not important for the RNA binding and PYD-independent NLRP6 oligomerization. We further generated the Nlrp6R39E&W50E mutant mice, which showed reduced inflammasome activation in either steady state intestine or during viral infection. However, the type I IFN production in cells or intestine tissue from Nlrp6R39E&W50E mutant mice remain normal. Interestingly, NLRP6-mediated inflammasome activation or the IFN-I production seems to play distinct roles in the defense responses against different types of RNA viruses. Our work generated a useful tool to study the inflammasome-dependent role of NLRP6 in vivo, which might help to understand the complexity of multiple pathways mediated by NLRP6 in response to the complicated and dynamic environmental cues in the intestine.


Asunto(s)
Inflamasomas , FN-kappa B , Ratones , Animales , Inflamasomas/genética , Inflamasomas/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Intestinos , Proteínas Quinasas Activadas por Mitógenos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
15.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39254430

RESUMEN

Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.


Asunto(s)
Orgánulos , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , Replicación Viral/fisiología , Orgánulos/metabolismo , Orgánulos/virología , Virus ARN Monocatenarios Positivos/metabolismo , Animales , Interacciones Huésped-Patógeno , Compartimentos de Replicación Viral/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(40): e2307318120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748074

RESUMEN

Epithelial tissue is at the forefront of innate immunity, playing a crucial role in the recognition and elimination of pathogens. Met is a receptor tyrosine kinase that is necessary for epithelial cell survival, proliferation, and regeneration. Here, we showed that Met is essential for the induction of cytokine production by cytosolic nonself double-stranded RNA through retinoic acid-inducible gene-I-like receptors (RLRs) in epithelial cells. Surprisingly, the tyrosine kinase activity of Met was dispensable for promoting cytokine production. Rather, the intracellular carboxy terminus of Met interacted with mitochondrial antiviral-signaling protein (MAVS) in RLR-mediated signaling to directly promote MAVS signalosome formation. These studies revealed a kinase activity-independent function of Met in the promotion of antiviral innate immune responses, defining dual roles of Met in both regeneration and immune responses in the epithelium.


Asunto(s)
Células Epiteliales , Proteínas Tirosina Quinasas Receptoras , Inmunidad Innata , Antivirales , Citocinas
17.
Proc Natl Acad Sci U S A ; 120(26): e2304082120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339222

RESUMEN

A synthetic biology approach toward constructing an RNA-based genome expands our understanding of living things and opens avenues for technological advancement. For the precise design of an artificial RNA replicon either from scratch or based on a natural RNA replicon, understanding structure-function relationships of RNA sequences is critical. However, our knowledge remains limited to a few particular structural elements intensively studied so far. Here, we conducted a series of site-directed mutagenesis studies of yeast narnaviruses ScNV20S and ScNV23S, perhaps the simplest natural autonomous RNA replicons, to identify RNA elements required for maintenance and replication. RNA structure disruption corresponding to various portions of the entire narnavirus genome suggests that pervasive RNA folding, in addition to the precise secondary structure of genome termini, is essential for maintenance of the RNA replicon in vivo. Computational RNA structure analyses suggest that this scenario likely applies to other "narna-like" viruses. This finding implies selective pressure on these simplest autonomous natural RNA replicons to fold into a unique structure that acquires both thermodynamic and biological stability. We propose the importance of pervasive RNA folding for the design of RNA replicons that could serve as a platform for in vivo continuous evolution as well as an interesting model to study the origin of life.


Asunto(s)
Virus ARN , ARN Viral , ARN Viral/genética , ARN Viral/química , Pliegue del ARN , Genoma Viral/genética , Virus ARN/genética , Secuencia de Bases , Replicón/genética , Replicación Viral
18.
Proc Natl Acad Sci U S A ; 120(5): e2217412120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693094

RESUMEN

Positive-strand RNA viruses replicate their genomes in virus-induced membrane vesicles, and the resulting RNA replication complexes are a major target for virus control. Nodavirus studies first revealed viral RNA replication proteins forming a 12-fold symmetric "crown" at the vesicle opening to the cytosol, an arrangement recently confirmed to extend to distantly related alphaviruses. Using cryoelectron microscopy (cryo-EM), we show that mature nodavirus crowns comprise two stacked 12-mer rings of multidomain viral RNA replication protein A. Each ring contains an ~19 nm circle of C-proximal polymerase domains, differentiated by strikingly diverged positions of N-proximal RNA capping/membrane binding domains. The lower ring is a "proto-crown" precursor that assembles prior to RNA template recruitment, RNA synthesis, and replication vesicle formation. In this proto-crown, the N-proximal segments interact to form a toroidal central floor, whose 3.1 Å resolution structure reveals many mechanistic details of the RNA capping/membrane binding domains. In the upper ring, cryo-EM fitting indicates that the N-proximal domains extend radially outside the polymerases, forming separated, membrane-binding "legs." The polymerase and N-proximal domains are connected by a long linker accommodating the conformational switch between the two rings and possibly also polymerase movements associated with RNA synthesis and nonsymmetric electron density in the lower center of mature crowns. The results reveal remarkable viral protein multifunctionality, conformational flexibility, and evolutionary plasticity and insights into (+)RNA virus replication and control.


Asunto(s)
Virus ARN , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación de ARN , Microscopía por Crioelectrón , Virus ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética
19.
Proc Natl Acad Sci U S A ; 120(1): e2211425120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577062

RESUMEN

De novo viral RNA-dependent RNA polymerases (RdRPs) utilize their priming element (PE) to facilitate accurate initiation. Upon transition to elongation, the PE has to retreat from the active site to give room to the template-product RNA duplex. However, PE conformational change upon this transition and the role of PE at elongation both remain elusive. Here, we report crystal structures of RdRP elongation complex (EC) from dengue virus serotype 2 (DENV2), demonstrating a dramatic refolding of PE that allows establishment of interactions with the RNA duplex backbone approved to be essential for EC stability. Enzymology data from both DENV2 and hepatitis C virus (HCV) RdRPs suggest that critical transition of the refolding likely occurs after synthesis of a 4- to 5-nucleotide (nt) product together providing a key basis in understanding viral RdRP transition from initiation to elongation.


Asunto(s)
ARN Polimerasa Dependiente del ARN , ARN , ARN Polimerasa Dependiente del ARN/metabolismo , Hepacivirus/metabolismo , Dominio Catalítico , Nucleótidos , ARN Viral/genética
20.
Proc Natl Acad Sci U S A ; 120(14): e2217066120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989298

RESUMEN

Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA