Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(1): 17-33, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666118

RESUMEN

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Asunto(s)
Proteínas ras/metabolismo , Animales , Membrana Celular/metabolismo , Anomalías Congénitas/metabolismo , Humanos , Trastornos Mentales/metabolismo , Mutación , Neoplasias/metabolismo , Filogenia , Transducción de Señal , Levaduras , Proteínas ras/química , Proteínas ras/genética
2.
Mol Cell ; 82(18): 3438-3452.e8, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055235

RESUMEN

RAF kinases are RAS-activated enzymes that initiate signaling through the MAPK cascade to control cellular proliferation, differentiation, and survival. Here, we describe the structure of the full-length RAF1 protein in complex with HSP90 and CDC37 obtained by cryoelectron microscopy. The reconstruction reveals a RAF1 kinase with an unfolded N-lobe separated from its C-lobe. The hydrophobic core of the N-lobe is trapped in the HSP90 dimer, while CDC37 wraps around the chaperone and interacts with the N- and C-lobes of the kinase. The structure indicates how CDC37 can discriminate between the different members of the RAF family. Our structural analysis also reveals that the folded RAF1 assembles with 14-3-3 dimers, suggesting that after folding RAF1 follows a similar activation as B-RAF. Finally, disruption of the interaction between CDC37 and the DFG segment of RAF1 unveils potential vulnerabilities in attempting the pharmacological degradation of RAF1 for therapeutic purposes.


Asunto(s)
Proteínas de Ciclo Celular , Chaperoninas , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/química , Microscopía por Crioelectrón , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica , Quinasas raf/metabolismo
3.
Mol Cell ; 82(11): 1992-2005.e9, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35417664

RESUMEN

Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.


Asunto(s)
Fosfolípidos , Proteínas Proto-Oncogénicas B-raf , Fosfolipasas A2 , Factor de Activación Plaquetaria/análogos & derivados , Factor de Activación Plaquetaria/metabolismo
4.
Genes Chromosomes Cancer ; 63(1): e23202, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37724934

RESUMEN

Glomus tumors are classified as members of the perivascular myoid family of tumors. Nearly half of these show NOTCH-gene fusions and a smaller subset has BRAF V600E mutations. Here, we report a novel ATG7::RAF1 fusion in malignant glomus tumor occurring in a 40-year-old female which has not been reported in the malignant glomus tumor before. A 40-year-old female presented with a persistent lateral heel pain and an increase in the size of a mass along the lateral ankle for nearly 10 years. Resected specimen showed a well circumscribed lesion composed of spindled and epithelioid cells with moderate nuclear atypia and mitotic figures (7/10 high-power fields) including atypical forms without any necrosis, lymphovascular, or perineural invasion. The tumor was positive for smooth muscle actin, smooth muscle myosin heavy chain, H-caldesmon, collagen type IV, and discovered on gastronintestinal stromal tumors-1 but negative for AE1/3, desmin, S-100, CD34, and CD117. RNA sequencing showed presence of ATG7-RAF1 fusion. This fusion has not been reported in the malignant glomus tumor before. Future studies on larger cohorts are needed to ascertain the biological significance of these tumors with novel gene fusions.


Asunto(s)
Tumor Glómico , Sarcoma , Neoplasias de los Tejidos Blandos , Femenino , Humanos , Adulto , Tumor Glómico/genética , Tumor Glómico/patología , Proteínas S100/genética , Fusión Génica , Biomarcadores de Tumor/genética
5.
Biochem Biophys Res Commun ; 701: 149609, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316092

RESUMEN

Rubisco catalysis a rate-limiting step in photosynthesis. It is a complex of eight large (RbcL) and eight small (RbcS) subunits. The biogenesis of Rubisco requires assembly chaperones. One of the key Rubisco assembly chaperones, Rubisco accumulation factor1 (RAF1), assembled as a dimer, acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes. In maize, lacking RAF1 causes Rubisco deficient and seedling lethal. A RAF1 homologue, RAF1-like (RAFL), has been detected in Arabidopsis. We found RAFL shares 61.98 % sequence similarity with RAF1. They have similar conserved domains, predicted 3D structures and gene expression pattern. Phylogenetic tree analysis showed that RAFL and RAF1 only present in analyzed dicots, while only one copy of RAF presented in monocots, mosses and green algae. Combined analysis by three different protein-protein interaction methods showed that RAFL interacts with RAF1 both in vivo and in vitro. Taken together, we conclude that RAFL and RAF1 are close paralogous genes, and they can form heterodimer and/or homodimers to mediate Rubisco assembly in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ribulosa-Bifosfato Carboxilasa , Arabidopsis/genética , Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Fotosíntesis , Filogenia , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas de Arabidopsis/metabolismo
6.
Neurochem Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837094

RESUMEN

Epilepsy is a common neurological disorder, and the exploration of potential therapeutic drugs for its treatment is still ongoing. Vitamin D has emerged as a promising treatment due to its potential neuroprotective effects and anti-epileptic properties. This study aimed to investigate the effects of vitamin D on epilepsy and neuroinflammation in juvenile mice using network pharmacology and molecular docking, with a focus on the mammalian target of rapamycin (mTOR) signaling pathway. Experimental mouse models of epilepsy were established through intraperitoneal injection of pilocarpine, and in vitro injury models of hippocampal neurons were induced by glutamate (Glu) stimulation. The anti-epileptic effects of vitamin D were evaluated both in vivo and in vitro. Network pharmacology and molecular docking analysis were used to identify potential targets and regulatory pathways of vitamin D in epilepsy. The involvement of the mTOR signaling pathway in the regulation of mouse epilepsy by vitamin D was validated using rapamycin (RAPA). The levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were assessed by enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining was used to analyze the apoptosis of hippocampal neurons. In in vivo experiments, vitamin D reduced the Racine scores of epileptic mice, prolonged the latency of epilepsy, and inhibited the production of TNF-α, IL-1ß, and IL-6 in the hippocampus. Furthermore, network pharmacology analysis identified RAF1 as a potential target of vitamin D in epilepsy, which was further confirmed by molecular docking analysis. Additionally, the mTOR signaling pathway was found to be involved in the regulation of mouse epilepsy by vitamin D. In in vitro experiments, Glu stimulation upregulated the expressions of RAF1 and LC3II/LC3I, inhibited mTOR phosphorylation, and induced neuronal apoptosis. Mechanistically, vitamin D activated the mTOR signaling pathway and alleviated mouse epilepsy via RAF1, while the use of the pathway inhibitor RAPA reversed this effect. Vitamin D alleviated epilepsy symptoms and neuroinflammation in juvenile mice by activating the mTOR signaling pathway via RAF1. These findings provided new insights into the molecular mechanisms underlying the anti-epileptic effects of vitamin D and further supported its use as an adjunctive therapy for existing anti-epileptic drugs.

7.
Cell Biol Toxicol ; 40(1): 14, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376606

RESUMEN

BACKGROUND: RING Finger Protein 115 (RNF115), a notable E3 ligase, is known to modulate tumorigenesis and metastasis. In our investigation, we endeavor to unravel the putative function and inherent mechanism through which RNF115 influences the evolution of thyroid carcinoma (THCA). METHODS: We analyzed RNF115 expression in THCA using the Cancer Genome Atlas (TCGA) database. The influence of RNF115 on the progression of THCA was evaluated using both in vitro and in vivo experimental approaches. The protein regulated by RNF115 was identified through bioinformatics analysis, and its biological significance was further explored. RESULTS: In both THCA tissues and cells, RNF115 showed elevated expression levels. Enhanced expression of RNF115 fostered cell proliferation, tumor growth, and the exacerbation of epithelial-mesenchymal transition (EMT) in THCA, while also promoting tumor lung metastasis. Bioinformatics analysis identified cyclin-dependent kinase 10 (CDK10) as a downstream target of RNF115, which was found to be ubiquitinated and degraded by RNF115 in THCA cells. Functionally, overexpression of CDK10 was found to counteract the promotion of malignant phenotype in THCA induced by RNF115. From a mechanistic perspective, RNF115 activated the Raf-1 pathway and enhanced cancer cell cycle progression by degrading CDK10 in THCA cells. CONCLUSION: RNF115 triggers cell proliferation, EMT, and tumor metastasis by ubiquitinating and degrading CDK10. The regulation of the Raf-1 pathway and cell cycle progression in THCA may be profoundly influenced by this process.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Tiroides , Ubiquitina-Proteína Ligasas , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Quinasas Ciclina-Dependientes , Neoplasias de la Tiroides/genética , Ubiquitina-Proteína Ligasas/genética
8.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095131

RESUMEN

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Asunto(s)
Neoplasias de la Mama , Fibrosarcoma , MicroARNs , Humanos , Femenino , Paclitaxel/farmacología , Neoplasias de la Mama/patología , Troponina T/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/farmacología , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Resistencia a Antineoplásicos/genética , Apoptosis/genética , Línea Celular Tumoral , Fibrosarcoma/genética , Fibrosarcoma/tratamiento farmacológico , Proliferación Celular , MicroARNs/genética
9.
Mod Pathol ; 36(4): 100083, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36788089

RESUMEN

Neurotrophic tyrosine receptor kinase (NTRK) fusions define infantile fibrosarcomas in young children and NTRK-rearranged spindle-cell tumors in older children and adults, which share characteristic spindle-cell histology and CD34 or S100 protein expression. Similar phenotypes were identified in tumors with BRAF, RAF1, or RET fusions, suggesting a unifying concept of "spindle-cell tumors with kinase gene fusions." In this study, we investigated CD30 expression in 38 mesenchymal tumors with kinase gene fusions using immunohistochemistry. CD30 was expressed in 15 of 22 NTRK-rearranged tumors and 12 of 16 tumors with BRAF, RAF1, or RET fusions. In total, CD30 was expressed in 27 of the 38 tumors (71%), with >50% CD30-positive cells in 21 tumors and predominantly moderate or strong staining in 24 tumors. CD34 and S100 protein were also expressed in 71% and 69% of the tumors, respectively. In contrast, CD30 was significantly less frequently expressed in other mesenchymal tumor types that histologically mimic kinase fusion-positive tumors (9 of 150 tumors, 6%), of which none showed >50% or predominantly strong staining. Among these mimicking tumors, malignant peripheral nerve sheath tumors occasionally (30%) expressed CD30, albeit in a weak focal manner in most positive cases. CD30 was also expressed in 3 of 15 separately analyzed ALK- or ROS1-positive inflammatory myofibroblastic tumors. Frequent expression of CD30 enhances the shared phenotype of spindle-cell tumors with NTRK and other kinase gene fusions, and its sensitivity seems similar to that of CD34 and S100 protein. Although moderate sensitivity hampers its use as a screening tool, CD30 expression could be valuable to rapidly identify high-yield candidates for molecular workup, particularly in communities that lack routine genetic analysis and/or for tumors with BRAF, RAF1, or RET fusions.


Asunto(s)
Fibrosarcoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Fibrosarcoma/genética , Proteínas de Fusión Oncogénica , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Tirosina Quinasas Receptoras , Receptor trkA/genética , Proteínas S100 , Antígenos CD/metabolismo
10.
Am J Med Genet A ; 191(2): 630-633, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333975

RESUMEN

Phenotype analysis of the Noonan syndrome (NS) related to RAF1 mutations demonstrates that a high proportion of cases exhibit severe lymphatic dysplasia and congenital heart disease, especially hypertrophic cardiomyopathy. Because of the difficulty of fetal phenotypic assessment, the percentage of cases with multisystemic prenatal presentation as well as the phenotypic variability may be underestimated. We describe a 35 weeks male preterm infant presenting with de novo missense mutation NM_002880.4(RAF1):c.770C>T (p.Ser257Leu), whose death occurred following birth. Antenatal ultrasound showed polyhydramnios, severe ascites, and tongue protrusion. Autopsy revealed multiple congenital anomalies including intrauterine growth restriction, hydrops fetalis, characteristic facial dysmorphia, short and webbed neck, hypertrichosis, severe lungs hypoplasia, thymic hyperplasia, hepato-splenomegaly, bilateral mild uretero-hydronephrosis, and mild pontocerebellar hypoplasia. Histology revealed increased hepatic hematopoiesis and iron deposits. This report confirms that NS may be associated with multisystem involvement and provides further evidence for the wide phenotypic variability associated with RAF1 variants.


Asunto(s)
Cardiopatías Congénitas , Síndrome de Noonan , Recién Nacido , Humanos , Masculino , Femenino , Embarazo , Proteínas Proto-Oncogénicas c-raf/genética , Recien Nacido Prematuro , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Síndrome de Noonan/genética , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Fenotipo
11.
Cell Commun Signal ; 21(1): 136, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316874

RESUMEN

The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Dimerización , Luciferasas
12.
Neurochem Res ; 48(5): 1531-1542, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36525124

RESUMEN

Our previous study found that activation of adenosine A1 receptor (A1R) induced phosphorylation of delta opioid receptor (DOR) and desensitization of its downstream signaling molecules, cAMP and Akt. To further investigate the effect of A1R agonist on DOR signaling and the underlying mechanism, we examined the effect of A1R activation upon binding of its agonist N6-cyclohexyl-adenosine (CHA) on DOR-mediated Raf-1/MEK/ERK activation, and found that prolonged CHA exposure resulted in downregulation of DOR-mediated Raf-1/MEK/ERK signaling pathway. CHA-treatment time dependently attenuated Raf-1-Ser338 phosphorylation induced by [D-Pen2,5] enkephalin (DPDPE), a specific agonist of DOR, and further caused downregulation of the Raf-1/MEK/ERK signaling pathway activated by DOR agonist. Moreover, CHA exposure time-dependently induced the phosphorylation of Raf-1-Ser289/296/301, the inhibitory phosphorylation sites that were regulated by negative feedback, thereby inhibiting activation of the MEK/ERK pathway, and this effect could be blocked by MEK inhibitor U0126. Finally, we proved that the heterologous desensitization of the Raf-1/MEK/ERK cascade was essential in the regulation of anti-nociceptive effect of DOR agonists by confirming that such effect was inhibited by pretreatment of CHA. Therefore, we conclude that the activation of A1R inhibits DOR-mediated MAPK signaling pathway via heterologous desensitization of the Raf-1/MEK/ERK cascade, which is a result of ERK-mediated Raf-1-Ser289/296/301 phosphorylation mediated by activation of A1R.


Asunto(s)
Receptor de Adenosina A1 , Receptores Opioides delta , Fosforilación , Receptor de Adenosina A1/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacología , Retroalimentación , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
13.
J Pathol ; 256(1): 119-133, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622442

RESUMEN

Ameloblastoma is an odontogenic neoplasm characterized by slow intraosseous growth with progressive jaw resorption. Recent reports have revealed that ameloblastoma harbours an oncogenic BRAFV600E mutation with mitogen-activated protein kinase (MAPK) pathway activation and described cases of ameloblastoma harbouring a BRAFV600E mutation in which patients were successfully treated with a BRAF inhibitor. Therefore, the MAPK pathway may be involved in the development of ameloblastoma; however, the precise mechanism by which it induces ameloblastoma is unclear. The expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C), induced by a combination of the EGF-MAPK pathway and Wnt/ß-catenin signalling, has been shown to induce epithelial morphogenesis. It was also reported that the overexpression of ARL4C, due to alterations in the EGF/RAS-MAPK pathway and Wnt/ß-catenin signalling, promotes tumourigenesis. However, the roles of ARL4C in ameloblastoma are unknown. We investigated the involvement of ARL4C in the development of ameloblastoma. In immunohistochemical analyses of tissue specimens obtained from 38 ameloblastoma patients, ARL4C was hardly detected in non-tumour regions but tumours frequently showed strong expression of ARL4C, along with the expression of both BRAFV600E and RAF1 (also known as C-RAF). Loss-of-function experiments using inhibitors or siRNAs revealed that ARL4C elevation depended on the RAF1-MEK/ERK pathway in ameloblastoma cells. It was also shown that the RAF1-ARL4C and BRAFV600E-MEK/ERK pathways promoted cell proliferation independently. ARL4C-depleted tumour cells (generated by knockdown or knockout) exhibited decreased proliferation and migration capabilities. Finally, when ameloblastoma cells were co-cultured with mouse bone marrow cells and primary osteoblasts, ameloblastoma cells induced osteoclast formation. ARL4C elevation in ameloblastoma further promoted its formation capabilities through the increased RANKL expression of mouse bone marrow cells and/or primary osteoblasts. These results suggest that the RAF1-MEK/ERK-ARL4C axis, which may function in cooperation with the BRAFV600E-MEK/ERK pathway, promotes ameloblastoma development. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Ameloblastoma/metabolismo , Proliferación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Osteoclastos/patología , Ameloblastoma/genética , Proliferación Celular/fisiología , Transformación Celular Neoplásica/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Osteoclastos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Vía de Señalización Wnt/genética
14.
World J Surg Oncol ; 21(1): 217, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481582

RESUMEN

BACKGROUND: Endometrial carcinoma (EC) is one of the world's typical female reproductive tract malignancies, mostly occurring in postmenopausal women. Many reports have confirmed that long non-coding RNA SOX21 antisense RNA1 (lncRNA SOX21-AS1) is associated with the progressions of various cancer. However, the mechanism of SOX21-AS1 in EC remains unclear. Our study is intended to probe the mechanisms of SOX21-AS1 on EC progression. METHODS: The CCK-8 assay and colony formation detected cell proliferation. Cell migration and invasion were assessed by transwell analysis. Apoptosis was measured by flow cytometry assay. Bioinformatics software predicted target binding and confirmed using a luciferase reporter analysis. RESULTS: SOX21-AS1 expression was upregulated in EC tumor tissues and cells. High expression of SOX21-AS1 was associated with poor overall survival. Silencing of SOX21-AS1 restrained cell proliferation, migration, invasion, and increased apoptosis in HEC-1A and Ishikawa cells. Additionally, bioinformatics analysis demonstrated that SOX21-AS1 modulated RAF1 expression by competitively binding to miR-7-5p. Functionally, silencing of RAF1 reversed the functions of miR-7-5p inhibitor in the proliferation, invasion, and apoptosis of HEC-1A/sh-SOX21-AS1 and Ishikawa/sh-SOX21-AS1 cells. CONCLUSIONS: SOX21-AS1 promoted the pathological development of EC by regulating the miR-7-5p/RAF1 pathway. This research may provide a novel target for EC therapy.


Asunto(s)
Neoplasias Endometriales , Neoplasias de los Genitales Femeninos , MicroARNs , ARN Largo no Codificante , Femenino , Humanos , Apoptosis , Movimiento Celular , Neoplasias Endometriales/genética , MicroARNs/genética , ARN Largo no Codificante/genética
15.
Proc Natl Acad Sci U S A ; 117(39): 24415-24426, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913049

RESUMEN

KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Silenciador del Gen , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética
16.
Skeletal Radiol ; 52(3): 517-540, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36542130

RESUMEN

BACKGROUND: New entities in the classification of bone and soft tissue tumors have been identified by use of advanced molecular-genetic techniques, including next-generation sequencing. Clinicoradiologic and pathologic correlation supports diagnostic classification. METHODS: Tumors from four morphologically grouped areas are selected to enhance diagnosis and awareness among the multidisciplinary team. These include select round cell tumors, spindle cell tumors, targetable tyrosine kinase/RAS::MAPK pathway-ovoid (epithelioid to spindled) tumors, and giant-cell-rich tumors of bone and soft tissue. RESULTS: Round cell tumors of bone and soft tissue include prototypical Ewing sarcoma, newer sarcomas with BCOR genetic alteration and CIC-rearranged, as well as updates on FUS/EWSR1::NFATc2, an EWSR1 non-ETS tumor that is solid with additional amplified hybridization signal pattern of EWSR1. This FUS/EWSR1::NFATc2 fusion has now been observed in seemingly benign to low-grade intraosseous vascular-rich and simple (unicameral) bone cyst tumors. Select spindle cell tumors of bone and soft tissue include rhabdomyosarcoma with FUS/EWSR1::TFCP2, an intraosseous high-grade spindle cell tumor without matrix. Targetable tyrosine-kinase or RAS::MAPK pathway-tumors of bone and soft tissue include NTRK, ALK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, PDGFB, and MET with variable ovoid myopericytic to spindled pleomorphic features and reproducible clinicopathologic and radiologic clues to their diagnosis. Giant-cell-rich tumors of bone, joint, and soft tissue are now respectively characterized by H3F3A mutation, CSF1 rearrangement (targetable), and HMGA2::NCOR2 fusion. CONCLUSION: This article is an update for radiologists, oncologists, surgeons, and pathologists to recognize these novel ovoid, spindled, giant-cell-rich, and round cell tumors, for optimal diagnostic classification and multidisciplinary team patient care.


Asunto(s)
Rabdomiosarcoma , Sarcoma de Ewing , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Sarcoma/patología , Sarcoma de Ewing/patología , Factores de Transcripción/genética , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/genética , Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética
17.
Ann Diagn Pathol ; 67: 152215, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856952

RESUMEN

Spitz tumors are melanocytic neoplasms morphologically characterized by spindled and/or epithelioid cells and specific stromal and epidermal changes associated with mutually exclusive fusion kinases involving ALK, ROS1, NTRK1, NTRK2, NTRK3, MET and RET, BRAF and MAP3K8 genes or, less commonly, HRAS mutation. RAF1 fusions have been recently detected in cutaneous melanocytic neoplasms, including conventional melanoma, congenital nevus and BAP-1 inactivated tumors. We report herewith three Spitz neoplasms with a RAF1 fusion, including a previously reported CTDSPL::RAF1 fusion and two novel PPAP2B::RAF1 and ATP2B4::RAF1 fusions. Two cases were classified as Spitz nevus, while the remaining neoplasm was classified as Spitz melanoma at the time of the diagnosis, given 9p21 homozygous deletion and positive sentinel lymph node biopsy. We suggest that RAF1 fused melanocytic neoplasms can represent a novel subgroup of Spitz tumors, with a RAF1 fusion representing an oncogenic driver.


Asunto(s)
Melanoma , Nevo de Células Epitelioides y Fusiformes , Neoplasias Cutáneas , Humanos , Proteínas Tirosina Quinasas/genética , Homocigoto , Proteínas Proto-Oncogénicas/genética , Eliminación de Secuencia , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patología , Nevo de Células Epitelioides y Fusiformes/diagnóstico , Nevo de Células Epitelioides y Fusiformes/genética , Proteínas Tirosina Quinasas Receptoras/genética
18.
Fetal Pediatr Pathol ; 42(3): 512-517, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36484718

RESUMEN

Introduction: NTRK-rearranged spindled cell tumors have been increasingly recognized with the widespread use of molecular studies. We describe a pediatric spindle cell neoplasm with MTAP-RAF1 gene fusion that fits into this group. Case report: An 8-year-old girl presented with mandibular mass. Histopathologically, it was a moderate to increased cellular spindle cell tumor with mild-to-moderate nuclear pleomorphism, focal perivascular keloid-like collagen, that was positive for S-100 and CD34. MTAP-RAF1 fusion was detected by next generation sequencing, confirming a low-grade sarcoma with MTAP-RAF1 fusion that is presently included in the category of NTRK-rearranged spindled cell tumors. Discussion: MTAP-RAF1 fusion, in the spectrum of spindle cell neoplasms with kinase gene rearrangements, can occur in the pediatric age group.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Femenino , Humanos , Niño , Biomarcadores de Tumor , Sarcoma/genética , Sarcoma/patología , Fusión Génica , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Reordenamiento Génico
19.
J Biol Chem ; 297(5): 101332, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688658

RESUMEN

Embryonic stem cells (ESCs) are progenitor cells that retain the ability to differentiate into various cell types and are necessary for tissue repair. Improving cell culture conditions to maintain the pluripotency of ESCs in vitro is an urgent problem in the field of regenerative medicine. Here, we reveal that Spautin-1, a specific small-molecule inhibitor of ubiquitin-specific protease (USP) family members USP10 and USP13, promotes the maintenance of self-renewal and pluripotency of mouse ESCs in vitro. Functional studies reveal that only knockdown of USP13, but not USP10, is capable of mimicking the function of Spautin-1. Mechanistically, we demonstrate that USP13 physically interacts with, deubiquitinates, and stabilizes serine/threonine kinase Raf1 and thereby sustains Raf1 protein at the posttranslational level to activate the FGF/MEK/ERK prodifferentiation signaling pathway in naïve mouse ESCs. In contrast, in primed mouse epiblast stem cells and human induced pluripotent stem cells, the addition of Spautin-1 had an inhibitory effect on Raf1 levels, but USP13 overexpression promoted self-renewal. The addition of an MEK inhibitor impaired the effect of USP13 upregulation in these cells. These findings provide new insights into the regulatory network of naïve and primed pluripotency.


Asunto(s)
Bencilaminas/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Quinazolinas/farmacología , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Línea Celular , Humanos , Ratones , Proteínas Proto-Oncogénicas c-raf/genética , Proteasas Ubiquitina-Específicas/genética
20.
J Transl Med ; 20(1): 255, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668458

RESUMEN

BACKGROUND: Lymphatic metastasis was an independent prognostic risk factor for hypopharyngeal carcinoma and was the main cause of treatment failure. The purpose of this study was to screen the differential genes and investigate the mechanism of lymphatic metastasis in hypopharyngeal carcinoma. METHODS: Transcriptome sequencing was performed on primary tumors of patients, and differential genes were screened by bioinformatics analysis. The expression of differential genes was verified by qRT-PCR, western-blotting and immunohistochemical, and prognostic value was analyzed by Kaplan-Meier and log-rank test and Cox's test. Next, FADU and SCC15 cell lines were used to demonstrate the function of differential genes both in vitro by EdU, Flow cytometry, Wound Healing and Transwell assays and in vivo by a foot-pad xenograft mice model. Proteomic sequencing was performed to screen relevant targets. In addition, in vitro and in vivo experiments were conducted to verify the mechanism of lymphatic metastasis. RESULTS: Results of transcriptome sequencing showed that RAF1 was a significantly differential gene in lymphatic metastasis and was an independent prognostic risk factor. In vitro experiments suggested that decreased expression of RAF1 could inhibit proliferation, migration and invasion of tumor cells and promote apoptosis. In vivo experiments indicated that RAF1 could promote tumor growth and lymphatic metastasis. Proteomic sequencing and subsequent experiments suggested that LAGE1 could promote development of tumor and lymphatic metastasis, and was regulated by RAF1. CONCLUSIONS: It suggests that RAF1 can promote lymphatic metastasis of hypopharyngeal carcinoma by regulating LAGE1, and provide a basis for the exploring of novel therapeutic target and ultimately provide new guidance for the establishment of intelligent diagnosis and precise treatment of hypopharyngeal carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Hipofaríngeas , Animales , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hipofaríngeas/genética , Metástasis Linfática , Ratones , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA