Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Planta ; 259(3): 54, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294548

RESUMEN

MAIN CONCLUSION: Using Raman micro-spectroscopy on tef roots, we could monitor cell wall maturation in lines with varied genetic lodging tendency. We describe the developing cell wall composition in root endodermis and cylinder tissue. Tef [Eragrostis tef (Zucc.) Trotter] is an important staple crop in Ethiopia and Eritrea, producing gluten-free and protein-rich grains. However, this crop is not adapted to modern farming practices due to high lodging susceptibility, which prevents the application of mechanical harvest. Lodging describes the displacement of roots (root lodging) or fracture of culms (stem lodging), forcing plants to bend or fall from their vertical position, causing significant yield losses. In this study, we aimed to understand the microstructural properties of crown roots, underlining tef tolerance/susceptibility to lodging. We analyzed plants at 5 and 10 weeks after emergence and compared trellised to lodged plants. Root cross sections from different tef genotypes were characterized by scanning electron microscopy, micro-computed tomography, and Raman micro-spectroscopy. Lodging susceptible genotypes exhibited early tissue maturation, including developed aerenchyma, intensive lignification, and lignin with high levels of crosslinks. A comparison between trellised and lodged plants suggested that lodging itself does not affect the histology of root tissue. Furthermore, cell wall composition along plant maturation was typical to each of the tested genotypes independently of trellising. Our results suggest that it is possible to select lines that exhibit slow maturation of crown roots. Such lines are predicted to show reduction in lodging and facilitate mechanical harvest.


Asunto(s)
Eragrostis , Microtomografía por Rayos X , Agricultura , Diferenciación Celular , Pared Celular
2.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39264067

RESUMEN

AIMS: This study aims to assess the potential bacterial inactivation pathway triggered by argon (Ar) cold atmospheric pressure plasma jet (CAPJ) discharge using spectroscopic and imaging techniques. METHODS AND RESULTS: Electrical and reactive species of the Ar CAPJ discharge was characterized. The chemical composition and morphology of bacteria pre- and post-CAPJ exposure were assessed using Fourier transform infrared (FTIR), Raman micro-spectroscopy, and transmission electron microscopy (TEM). A greater than 6 log reduction of Escherichia coli and Staphylococcus aureus was achieved within 60 and 120 s of CAPJ exposure, respectively. Extremely low D-values (<20 s) were recorded for both the isolates. The alterations in the FTIR spectra and Raman micro-spectra signals of post-CAPJ exposed bacteria revealed the degree of destruction at the molecular level, such as lipid peroxidation, protein oxidation, bond breakages, etc. Further, TEM images of exposed bacteria indicated the incurred damages on cell morphology by CAPJ reactive species. Also, the inactivation process varied for both isolates, as evidenced by the correlation between the inactivation curve and FTIR spectra. It was observed that the identified gas-phase reactive species, such as Ar I, O I, OH•, NO+, OH+, NO2-, NO3-, etc. played a significant role in bacterial inactivation. CONCLUSIONS: This study clearly demonstrated the effect of CAPJ exposure on bacterial cell morphology and molecular composition, illuminating potential bacterial inactivation mechanisms.


Asunto(s)
Argón , Presión Atmosférica , Escherichia coli , Gases em Plasma , Staphylococcus aureus , Argón/farmacología , Gases em Plasma/farmacología , Escherichia coli/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Microscopía Electrónica de Transmisión , Espectrometría Raman , Viabilidad Microbiana
3.
J Exp Bot ; 73(7): 1868-1893, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986250

RESUMEN

Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.


Asunto(s)
Microscopía , Fotosíntesis , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Células del Mesófilo/metabolismo , Hojas de la Planta/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628155

RESUMEN

Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.


Asunto(s)
Enfermedad de Fabry , Animales , Diagnóstico Precoz , Enfermedad de Fabry/diagnóstico por imagen , Humanos , Lípidos , Ratones , Microscopía/métodos , Espectrometría Raman/métodos
5.
Anal Bioanal Chem ; 413(28): 7093-7106, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34599394

RESUMEN

The article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2-4 µm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2-160 µm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles. Spearfishing is a well-known example of the effects of refraction at the boundary between two index-mismatched media. The object Greal is seen, due to refraction, as Gvir from the angle ß (without knowing the depth position). The real position is obtained under the angle α. In a microscope (see inset), index mismatch deforms the image point of Greal into an image line. The pinhole substantially reduces deformations and allows the determination of the position of the point emitter G. (Cartoon designed by Sofia Anker).

6.
Molecules ; 26(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203597

RESUMEN

We used Raman micro-spectroscopy technique to analyze the molecular changes associated with oral squamous cell carcinoma (SCC) cells in the form of frozen tissue. Previously, Raman micro-spectroscopy technique on human tissue was mainly based on spectral analysis, but we worked on imaging of molecular structure. In this study, we evaluated the distribution of four components at the cell level (about 10 µm) to describe the changes in protein and molecular structures of protein belonging to malignant tissue. We analyzed ten oral SCC samples of five patients without special pretreatments of the use of formaldehyde. We obtained cell level images of the oral SCC cells at various components (peak at 935 cm-1: proline and valine, 1004 cm-1: phenylalanine, 1223 cm-1: nucleic acids, and 1650 cm-1: amide I). These mapping images of SCC cells showed the distribution of nucleic acids in the nuclear areas; meanwhile, proline and valine, phenylalanine, and amide I were detected in the cytoplasm areas of the SCC cells. Furthermore, the peak of amide I in the cancer area shifts to the higher wavenumber side, which indicates the α-helix component may decrease in its relative amounts of protein in the ß-sheet or random coil conformation. Imaging of SCC cells with Raman micro-spectroscopy technique indicated that such a new observation of cancer cells is useful for analyzing the detailed distribution of various molecular conformation within SCC cells.


Asunto(s)
Espectrometría Raman/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Diagnóstico por Imagen/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Japón , Conformación Molecular , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
7.
Sensors (Basel) ; 19(18)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540064

RESUMEN

Previous works showed that spatially resolved Raman spectra of cytoplasm and nucleus region of single cells exposed to X-rays evidence different features. The present work aims to introduce a new approach to profit from these differences to deeper investigate X-ray irradiation effects on single SH-SY5Y human neuroblastoma cells. For this aim, Raman micro-spectroscopy was performed in vitro on single cells after irradiation by graded X-ray doses (2, 4, 6, 8 Gy). Spectra from nucleus and cytoplasm regions were selectively acquired. The examination by interval Principal Component Analysis (i-PCA) of the difference spectra obtained by subtracting each cytoplasm-related spectrum from the corresponding one detected at the nucleus enabled us to reveal the subtle modifications of Raman features specific of different spatial cell regions. They were discussed in terms of effects induced by X-ray irradiation on DNA/RNA, lipids, and proteins. The proposed approach enabled us to evidence some features not outlined in previous investigations.


Asunto(s)
Núcleo Celular/efectos de la radiación , Neuroblastoma/patología , Espectrometría Raman , Línea Celular Tumoral , Preescolar , Femenino , Humanos , Análisis Multivariante , Análisis de Componente Principal , Rayos X
8.
Sensors (Basel) ; 18(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783713

RESUMEN

Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.


Asunto(s)
Escherichia coli/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Pinzas Ópticas , Antibacterianos/efectos adversos , Escherichia coli/crecimiento & desarrollo , Micromanipulación/métodos , Análisis de Componente Principal , Espectrometría Raman
9.
Exp Mol Pathol ; 98(3): 502-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25805102

RESUMEN

Raman spectroscopy can provide a molecular-level fingerprint of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for dysplasia and early, non-invasive cancer diagnosis (carcinoma in situ), both ex-vivo and in vivo. In this study, we demonstrate this potential by collecting Raman spectra of the nucleoli, nuclei and cytoplasm from oral epithelial cancer (SCC-4) and dysplastic (pre-cancerous, DOK) cell lines and from normal oral epithelial primary cell cultures, in vitro, which were then analysed by principal component analysis (PCA) as a multivariate statistical method to discriminate the spectra. Results show significant discrimination between cancer and normal cell lines. Furthermore, the dysplastic and cancer cell lines could be discriminated based on the spectral profiles of the cytoplasmic regions. The principal component loading plot, which elucidates the biochemical features responsible for the discrimination, showed significant contributions of nucleic acid and proteins for nucleolar and nuclear sites and variation in features of lipids for the cytoplasmic area. This technique may provide a rapid screening method and have potential use in the diagnosis of dysplasia and early, non-invasive oral cancer, the treatment of which involves much less extensive and complex surgery and a reduction in associated co-morbidity for the patient.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico , Detección Precoz del Cáncer/métodos , Neoplasias de la Boca/diagnóstico , Espectrometría Raman/métodos , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Humanos , Neoplasias de la Boca/metabolismo
10.
Chemosphere ; 361: 142553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851509

RESUMEN

The widespread presence of microplastics (MPs) in the air and their potential impact on human health underscore the pressing need to develop robust methods for quantifying their presence, particularly in the breathable fraction (<5 µm). In this study, Raman micro-spectroscopy (µRaman) was employed to assess the concentration of indoor airborne MPs >1 µm in four indoor environments (a meeting room, a workshop, and two apartments) under different levels of human activity. The indoor airborne MP concentration spanned between 58 and 684 MPs per cubic meter (MP m-3) (median 212 MP m-3, MPs/non-plastic ratio 0-1.6%), depending not only on the type and level of human activity, but also on the surface area and air circulation of the investigated locations. Additionally, we assessed in the same environments the filtration performance of a type IIR surgical facemask, which could overall retain 85.4 ± 3.9% of the MPs. We furthermore estimated a human MP intake from indoor air of 3415 ± 2881 MPs day-1 (mostly poly-amide MPs), which could be decreased to 283 ± 317 MPs day-1 using the surgical facemask. However, for the breathable fraction of MPs (1-5 µm), the efficiency of the surgical mask was reduced to 57.6%.


Asunto(s)
Contaminación del Aire Interior , Microplásticos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Microplásticos/análisis , Humanos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Espectrometría Raman , Máscaras
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124800, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39024784

RESUMEN

Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.

12.
Heliyon ; 9(9): e20119, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809658

RESUMEN

The water treatment for microplastics (MP) at a Danish groundwater-based waterworks was assessed by Fourier-Transform IR micro-spectroscopy (µFTIR) (nominal size limit 6.6 µm) and compared to results from Raman micro-spectroscopy (µRaman) (nominal size limit 1.0 µm) on the same sample set. The MP abundance at the waterworks' inlet and outlet was quantified as MP counts per cubic metre (N/m3) and estimated MP mass per cubic metre (µg/m3). The waterworks' MP removal efficiency was found to be higher when analysing by µFTIR (counts: 78.14 ± 49.70%, mass: 98.73 ± 11.10%) and less fluctuating than when using µRaman (counts: 43.2%, mass: 75.1%). However, both techniques pointed to a value of ∼80% for the counts' removal efficiency of MPs >6.6 µm. Contrarily to what was shown by µRaman, no systematic leaking of MPs from the plastic elements of the facility could be identified for the µFTIR dataset, either from the counts (inlet 31.86 ± 17.17 N/m3, outlet 4.98 ± 2.09 N/m3) or mass estimate (inlet 76.30 ± 106.30 µg/m3, outlet 2.81 ± 2.78 µg/m3). The estimation of human MP intake from drinking water calculated from the µFTIR data (5 N/(year·capita)) proved to be approximately 332 times lower than that calculated from the µRaman dataset, although in line with previous studies employing µFTIR. By merging the MP length datasets from the two techniques, it could be shown that false negatives became prevalent in the µFTIR dataset already below 50 µm. Further, by fitting the overall frequency of the MP length ranges with a power function, it could be shown that µFTIR missed approximately 95.7% of the extrapolated MP population (1-1865.9 µm). Consequently, relying on only µFTIR may have led to underestimating the MP content of the investigated drinking water, as most of the 1-50 µm MP would have been missed.

13.
J Hazard Mater ; 460: 132450, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708651

RESUMEN

Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.


Asunto(s)
Chlorella , Descoloración del Agua , Chlorella/genética , Perfilación de la Expresión Génica , Colorantes/toxicidad , Compuestos Azo
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123183, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523853

RESUMEN

While the natron and plant ash glass tesserae may be found on places of importance across the former Roman and Byzantine empires, wood ash glass tesserae are scarce. This is the first time a wood ash glass tessera is studied in detail. It was part of a magnificent 8-metres tall statue of Madonna in Malbork, Poland, created at the end of the 14th century and destroyed at the end of World War Two. It was found to be coloured by cobalt with possible impact of copper, and opacified by Ca-phosphate. Processes previously described in sodium-rich glasses were observed also in the studied potassium-rich wood ash glass tessera, such as diffusion of the respective alkali metal into the Ca-phosphate grains. The elemental composition of the tessera indicates that it is original - mediaeval, from the area north of Alps. Two phases were identified for the first time, to authors' best knowledge, in any glass tessera - leucite (tetragonal KAlSi2O6) and pseudowollastonite (monoclinic CaSiO3). As pseudowollastonite is a high-temperature phase, it may serve as an indicator of production temperature, which was further supported by the study of polymerisation index of model glasses. This study contributes to the knowledge of old technologies and showed that the know-how for opacification was imported from the Mediterranean, while the raw materials employed for the base glass preparation were from the area north of Alps.

15.
Environ Pollut ; 319: 120994, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603757

RESUMEN

Microplastics (MPs) are present across the global ocean and can be encountered by many species, including zooplankton. Although they fall within the size range of zooplankton prey, there are few studies on MPs ingestion carried out in situ. In this study, we analyzed MPs ingestion during two seasons (rainy and dry) of organisms from 5 taxonomic groups of zooplankton from two bays of the Mexican central Pacific: Manzanillo and Navidad. In total, 2643 individuals were analyzed, and of those 23 individuals contained MPs. The ingestion rate by taxonomic group was 1 MP/36 copepods (0.02), 1 MP/30 decapods-mysis (0.03), 1 MP/29 decapods-megalopa (0.03), and 1 MP/200 fish larvae (0.005). No plastics were found in chaetognaths, amphipods, or decapods-zoea. The average length of the ingested particles was 468.1 ± 113.8 µm, with a minimum of 15.6 and a maximum of 647.6 µm. All MPs >300 µm were fibers, with diameters <50 µm. Fragments were the most abundant MPs (54.2%), followed by fibers (34.2%) and spheres (11.4%). Statistical analyses showed no significant differences (p > 0.05) between the bays or seasons. Using RAMAN spectroscopy, it was possible to identify 6 different types of polymers, with poly (ethylene:propylene) being the most abundant (42.8%). This polymer is commonly used to manufacture plastic bags, ropes and fishing nets. The results confirm that certain zooplankton groups are consuming MPs and suggest that omnivorous species are more likely to ingest MPs, possibly due to their capacity for foraging flexibility and opportunistic feeding strategies. However, the ingestion of MPs cannot be attributed to a single factor; it is necessary to consider variables such as the sampling area, feeding strategy, size, and seasonality to understand the dynamics of MPs ingestion by zooplankton groups.


Asunto(s)
Contaminantes Químicos del Agua , Zooplancton , Animales , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Polietileno , Ingestión de Alimentos
16.
Heliyon ; 9(6): e17113, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484254

RESUMEN

The retainment of microplastics (MPs) down to 1 µm by a Danish drinking water plant fed with groundwater was quantified using Raman micro-spectroscopy (µRaman). The inlet and outlet were sampled in parallel triplicates over five consecutive days of normal activity. For each triplicate, approximately 1 m3 of drinking water was filtered with a custom-made device employing 1 µm steel filters. The MP abundance was expressed as MP counts per liter (N/L) and MP mass per liter (pg/L), the latter being estimated from the morphological parameters provided by the µRaman analysis. Hence the treated water held on average 1.4 MP counts/L, corresponding to 4 pg/L. The raw water entering the sand filters held a higher MP abundance, and the overall efficiency of the treatment was 43.2% in terms of MP counts and 75.1% in terms of MP mass. The reason for the difference between count-based and mass-based efficiencies was that 1-5 µm MP were retained to a significantly lower degree than larger ones. Above 10 µm, 79.6% of all MPs were retained by the filters, while the efficiency was only 41.1% below 5 µm. The MP retainment was highly variable between measurements, showing an overall decreasing tendency over the investigated period. Therefore, the plastic elements of the plant (valves, sealing components, etc.) likely released small-sized MPs due to the mechanical stress experienced during the treatment. The sub-micron fraction (0.45-1 µm) of the samples was also qualitatively explored, showing that nanoplastics (NPs) were present and that at least part hereof could be detected by µRaman.

17.
Plant Methods ; 19(1): 71, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452400

RESUMEN

BACKGROUND: Investigations into the growth and self-organization of plant roots is subject to fundamental and applied research in various areas such as botany, agriculture, and soil science. The growth activity of the plant tissue can be investigated by isotope labeling experiments with heavy water and subsequent detection of the deuterium in non-exchangeable positions incorporated into the plant biomass. Commonly used analytical methods to detect deuterium in plants are based on mass-spectrometry or neutron-scattering and they either suffer from elaborated sample preparation, destruction of the sample during analysis, or low spatial resolution. Confocal Raman micro-spectroscopy (CRM) can be considered a promising method to overcome the aforementioned challenges. The substitution of hydrogen with deuterium results in the measurable shift of the CH-related Raman bands. By employing correlative approaches with a high-resolution technique, such as helium ion microscopy (HIM), additional structural information can be added to CRM isotope maps and spatial resolution can be further increased. For that, it is necessary to develop a comprehensive workflow from sample preparation to data processing. RESULTS: A workflow to prepare and analyze roots of hydroponically grown and deuterium labeled Zea mays by correlative HIM-CRM micro-analysis was developed. The accuracy and linearity of deuterium detection by CRM were tested and confirmed with samples of deuterated glucose. A set of root samples taken from deuterated Zea mays in a time-series experiment was used to test the entire workflow. The deuterium content in the roots measured by CRM was close to the values obtained by isotope-ratio mass spectrometry. As expected, root tips being the most actively growing root zone had incorporated the highest amount of deuterium which increased with increasing time of labeling. Furthermore, correlative HIM-CRM analysis allowed for obtaining the spatial distribution pattern of deuterium and lignin in root cross-sections. Here, more active root zones with higher deuterium incorporation showed less lignification. CONCLUSIONS: We demonstrated that CRM in combination with deuterium labeling can be an alternative and reliable tool for the analysis of plant growth. This approach together with the developed workflow has the potential to be extended to complex systems such as plant roots grown in soil.

18.
J Biophotonics ; 16(12): e202300146, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37556739

RESUMEN

The quantitative determination of topically applied substances in the skin is severely limited and represents a challenging task. The porcine skin ex vivo was topically treated with a gel containing caffeine (CF) and propylene glycol (PG), and depth-resolved Raman spectra were recorded with two confocal Raman microscopes. We applied a novel tailored multivariate curve resolution-alternating least squares method to the selected spectral regions (512-604 and 778-1148 cm-1 ) of gel-treated skin and quantitatively determined the concentrations of CF and PG in the stratum corneum (SC). The highest concentration of CF (181 mg/cm3 ) was found at the surface, while PG (384 mg/cm3 ) was found at 10% SC depth, indicating the formation of a reservoir at the superficial SC. The concentrations of CF and PG decreased monotonically and reached the detection limit at ≈60% and ≈80% SC depth, respectively, indicating that neither permeate the SC.


Asunto(s)
Cafeína , Piel , Animales , Porcinos , Análisis de los Mínimos Cuadrados , Epidermis , Propilenglicol , Espectrometría Raman/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121937, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36201869

RESUMEN

The tumor-node-metastasis (TNM) system is the most common way that doctors determine the anatomical extent of cancer on the basis of clinical and pathological criteria. In this study, a spectral histopathological study has been carried out to bridge Raman micro spectroscopy with the breast cancer TNM system. A total of seventy breast tissue samples, including healthy tissue, early, middle, and advanced cancer, were investigated to provide detailed insights into compositional and structural variations that accompany breast malignant evolution. After evaluating the main spectral variations in all tissue types, the generalized discriminant analysis (GDA) pathological diagnostic model was established to discriminate the TNM staging and grading information. Moreover, micro-Raman images were reconstructed by K-means clustering analysis (KCA) for visualizing the lobular acinar in healthy tissue and ductal structures in all early, middle and advanced breast cancer tissue groups. While, univariate imaging techniques were adapted to describe the distribution differences of biochemical components such as tryptophan, ß-carotene, proteins, and lipids in the scanned regions. The achieved spectral histopathological results not only established a spectra-structure correlations via tissue biochemical profiles but also provided important data and discriminative model references for in vivo Raman-based breast cancer diagnosis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Estadificación de Neoplasias , Mama/patología , Espectrometría Raman/métodos , Análisis Discriminante
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121862, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122465

RESUMEN

In response to the growing need for development of modern biomaterials for applications in regenerative medicine strategies, the research presented here investigated the biological potential of two types of polymer nanocomposites. Graphene oxide (GO) and partially reduced graphene oxide (rGO) were incorporated into a poly(ε-caprolactone) (PCL) matrix, creating PCL/GO and PCL/rGO nanocomposites in the form of membranes. Proliferation of osteoblast-like cells (human U-2 OS cell line) on the surface of the studied materials confirmed their biological activity. Fluorescence microscopy was able to distinguish the different patterns of interaction between cells (depending on the type of material) after 15 days of the test run. Raman micro-spectroscopy and two-dimensional correlation spectroscopy (2D-COS) applied to Raman spectra distinguished the nature of cell-material interactions after only 8 days. Combination of these two techniques (Raman micro-spectroscopy and 2D-COS analysis) facilitated identification of a much more complex cellular response (especially from proteins) on the surface of PCL/GO. The presented approach can be regarded as a method for early study of the bioactivity of membrane materials.


Asunto(s)
Grafito , Humanos , Grafito/farmacología , Grafito/química , Poliésteres/química , Polímeros , Osteoblastos , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA