Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.911
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Cell ; 183(4): 1070-1085.e12, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031744

RESUMEN

The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.


Asunto(s)
Lesión Pulmonar Aguda/patología , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Animales , Betacoronavirus/aislamiento & purificación , Betacoronavirus/fisiología , COVID-19 , Línea Celular , Quimiocinas/sangre , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Pulmón/fisiología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pandemias , Neumonía Viral/mortalidad , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/patología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
2.
Physiol Rev ; 104(2): 533-587, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561137

RESUMEN

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.


Asunto(s)
Pulmón , Insuficiencia Multiorgánica , Humanos , Insuficiencia Multiorgánica/metabolismo , Pulmón/metabolismo , Endotelio Vascular/metabolismo , Amiloide/química , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo
3.
Annu Rev Physiol ; 86: 505-529, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345908

RESUMEN

Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , Células Endoteliales , Pulmón , Homeostasis , Endotelio Vascular
4.
Annu Rev Physiol ; 85: 47-69, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36351366

RESUMEN

The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.


Asunto(s)
Pulmón , Humanos , Adulto , Pulmón/fisiología
5.
Proc Natl Acad Sci U S A ; 120(51): e2309900120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085774

RESUMEN

How acute respiratory distress syndrome progresses from underlying disease or trauma is poorly understood, and there are no generally accepted treatments resulting in a 40% mortality rate. However, during the inflammation that accompanies this disease, the phospholipase A2 concentration increases in the alveolar fluids leading to the hydrolysis of bacterial, viral, and lung surfactant phospholipids into soluble lysolipids. We show that if the lysolipid concentration in the subphase reaches or exceeds its critical micelle concentration, the surface tension, γ, of dipalmitoyl phosphatidylcholine (DPPC) or Curosurf monolayers increases and the dilatational modulus, [Formula: see text], decreases to that of a pure lysolipid interface. This is consistent with DPPC being solubilized in lysolipid micelles and being replaced by lysolipid at the interface. These changes lead to [Formula: see text] which is the criterion for the Laplace instability that can lead to mechanical instabilities during lung inflation, potentially causing alveolar collapse. These findings provide a mechanism behind the alveolar collapse and uneven lung inflation during ARDS.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Humanos , Pulmón , Fosfolipasas A2 , Tensoactivos
6.
Circulation ; 150(1): 49-61, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506045

RESUMEN

BACKGROUND: Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation. METHODS: We assessed cardiac macrophage subsets using immunofluorescence histology of autopsy specimens from 21 patients with COVID-19 with SARS-CoV-2-associated ARDS and 33 patients who died from other causes. In mice, we compared cardiac immune cell dynamics after SARS-CoV-2 infection with ARDS induced by intratracheal instillation of Toll-like receptor ligands and an ACE2 (angiotensin-converting enzyme 2) inhibitor. RESULTS: In humans, SARS-CoV-2 increased total cardiac macrophage counts and led to a higher proportion of CCR2+ (C-C chemokine receptor type 2 positive) macrophages. In mice, SARS-CoV-2 and virus-free lung injury triggered profound remodeling of cardiac resident macrophages, recapitulating the clinical expansion of CCR2+ macrophages. Treating mice exposed to virus-like ARDS with a tumor necrosis factor α-neutralizing antibody reduced cardiac monocytes and inflammatory MHCIIlo CCR2+ macrophages while also preserving cardiac function. Virus-like ARDS elevated mortality in mice with pre-existing heart failure. CONCLUSIONS: Our data suggest that viral ARDS promotes cardiac inflammation by expanding the CCR2+ macrophage subset, and the associated cardiac phenotypes in mice can be elicited by activating the host immune system even without viral presence in the heart.


Asunto(s)
COVID-19 , Cardiomiopatías , Síndrome de Dificultad Respiratoria , SARS-CoV-2 , COVID-19/inmunología , COVID-19/complicaciones , COVID-19/patología , Animales , Humanos , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Ratones , Masculino , Femenino , Cardiomiopatías/inmunología , Cardiomiopatías/etiología , Cardiomiopatías/patología , Cardiomiopatías/virología , Macrófagos/inmunología , Macrófagos/patología , Macrófagos/metabolismo , Inflamación/patología , Persona de Mediana Edad , Miocardio/patología , Miocardio/inmunología , Ratones Endogámicos C57BL , Anciano
7.
Annu Rev Med ; 74: 457-471, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36469902

RESUMEN

Heterogeneity in sepsis and acute respiratory distress syndrome (ARDS) is increasingly being recognized as one of the principal barriers to finding efficacious targeted therapies. The advent of multiple high-throughput biological data ("omics"), coupled with the widespread access to increased computational power, has led to the emergence of phenotyping in critical care. Phenotyping aims to use a multitude of data to identify homogenous subgroups within an otherwise heterogenous population. Increasingly, phenotyping schemas are being applied to sepsis and ARDS to increase understanding of these clinical conditions and identify potential therapies. Here we present a selective review of the biological phenotyping schemas applied to sepsis and ARDS. Further, we outline some of the challenges involved in translating these conceptual findings to bedside clinical decision-making tools.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Síndrome de Dificultad Respiratoria/terapia
8.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583855

RESUMEN

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Síndrome de Dificultad Respiratoria , Sevoflurano , Cicatrización de Heridas , Sevoflurano/farmacología , Humanos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/patología , Cicatrización de Heridas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células A549 , Proliferación Celular/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Movimiento Celular/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Citocinas/metabolismo , Autofagia/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología
9.
Exp Cell Res ; 437(2): 114013, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555014

RESUMEN

Mesenchymal stem cells (MSCs) have been widely used to treat various inflammatory and immune-related diseases in preclinical and clinical settings. Intravital microscopy (IVM) is considered the gold standard for investigating pathophysiological conditions in living animals. However, the potential for real-time monitoring of MSCs in the pulmonary microenvironment remains underexplored. In this study, we first constructed a lung window and captured changes in the lung at the cellular level under both inflammatory and noninflammatory conditions with a microscope. We further investigated the dynamics and effects of MSCs under two different conditions. Meanwhile, we assessed the alterations in the adhesive capacity of vascular endothelial cells in vitro to investigate the underlying mechanisms of MSC retention in an inflammatory environment. This study emphasizes the importance of the "lung window" for live imaging of the cellular behavior of MSCs by vein injection. Moreover, our results revealed that the upregulation of vascular cell adhesion molecule 1 (VCAM1) in endothelial cells post-inflammatory injury could enhance MSC retention in the lung, further ameliorating acute lung injury. In summary, intravital microscopy imaging provides a practical method to investigate the therapeutic effects of MSCs in acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Lipopolisacáridos/farmacología , Células Endoteliales/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo
10.
Am J Respir Crit Care Med ; 209(11): 1304-1313, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477657

RESUMEN

Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sobrevivientes , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Estados Unidos , National Heart, Lung, and Blood Institute (U.S.) , Calidad de Vida , Encéfalo/fisiopatología
11.
Am J Respir Crit Care Med ; 209(1): 24-36, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032683

RESUMEN

Background: This document updates previously published Clinical Practice Guidelines for the management of patients with acute respiratory distress syndrome (ARDS), incorporating new evidence addressing the use of corticosteroids, venovenous extracorporeal membrane oxygenation, neuromuscular blocking agents, and positive end-expiratory pressure (PEEP). Methods: We summarized evidence addressing four "PICO questions" (patient, intervention, comparison, and outcome). A multidisciplinary panel with expertise in ARDS used the Grading of Recommendations, Assessment, Development, and Evaluation framework to develop clinical recommendations. Results: We suggest the use of: 1) corticosteroids for patients with ARDS (conditional recommendation, moderate certainty of evidence), 2) venovenous extracorporeal membrane oxygenation in selected patients with severe ARDS (conditional recommendation, low certainty of evidence), 3) neuromuscular blockers in patients with early severe ARDS (conditional recommendation, low certainty of evidence), and 4) higher PEEP without lung recruitment maneuvers as opposed to lower PEEP in patients with moderate to severe ARDS (conditional recommendation, low to moderate certainty), and 5) we recommend against using prolonged lung recruitment maneuvers in patients with moderate to severe ARDS (strong recommendation, moderate certainty). Conclusions: We provide updated evidence-based recommendations for the management of ARDS. Individual patient and illness characteristics should be factored into clinical decision making and implementation of these recommendations while additional evidence is generated from much-needed clinical trials.


Asunto(s)
Bloqueantes Neuromusculares , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Corticoesteroides/uso terapéutico , Pulmón , Bloqueantes Neuromusculares/uso terapéutico , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
12.
Am J Respir Crit Care Med ; 209(1): 70-82, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37878820

RESUMEN

Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.


Asunto(s)
Lesión Pulmonar Aguda , Disfunción Primaria del Injerto , Humanos , Lesión Pulmonar Aguda/genética , Genómica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo
13.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687499

RESUMEN

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Asunto(s)
Cuidados Críticos , Unidades de Cuidados Intensivos , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Cuidados Críticos/métodos , Cuidados Críticos/normas , Consenso , Síndrome , Enfermedad Crítica/terapia , Fenotipo , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/clasificación
14.
Am J Respir Crit Care Med ; 210(9): 1123-1131, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39288368

RESUMEN

Rationale: Lung-protective strategies using low Vt and moderate positive end-expiratory pressure (PEEP) are considered best practice in critical care, but interventional trials have never been conducted in patients with acute brain injuries because of concerns about carbon dioxide control and the effect of PEEP on cerebral hemodynamics. Objectives: To test the hypothesis that ventilation with lower VT and higher PEEP compared to conventional ventilation would improve clinical outcomes in patients with acute brain injury. Methods: In this multicenter, open-label, controlled clinical trial, 190 adult patients with acute brain injury were assigned to receive either a lung-protective or a conventional ventilatory strategy. The primary outcome was a composite endpoint of death, ventilator dependency, and acute respiratory distress syndrome (ARDS) at Day 28. Neurological outcome was assessed at ICU discharge by the Oxford Handicap Scale and at 6 months by the Glasgow Outcome Scale. Measurements and Main Results: The two study arms had similar characteristics at baseline. In the lung-protective and conventional strategy groups, using an intention-to-treat approach, the composite outcome at 28 days was 61.5% and 45.3% (relative risk [RR], 1.35; 95% confidence interval [CI], 1.03-1.79; P = 0.025). Mortality was 28.9% and 15.1% (RR, 1.91; 95% CI, 1.06-3.42; P = 0.02), ventilator dependency was 42.3% and 27.9% (RR, 1.52; 95% CI, 1.01-2.28; P = 0.039), and incidence of ARDS was 30.8% and 22.1% (RR, 1.39; 95% CI, 0.85-2.27; P = 0.179), respectively. The trial was stopped after enrolling 190 subjects because of termination of funding. Conclusions: In patients with acute brain injury without ARDS, a lung-protective ventilatory strategy, as compared with a conventional strategy, did not reduce mortality, percentage of patients weaned from mechanical ventilation, or incidence of ARDS and was not beneficial in terms of neurological outcomes. Because of the early termination, these preliminary results require confirmation in larger trials. Clinical trial registered with www.clinicaltrials.gov (NCT01690819).


Asunto(s)
Respiración con Presión Positiva , Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Masculino , Femenino , Persona de Mediana Edad , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Respiración Artificial/métodos , Anciano , Lesiones Encefálicas/terapia , Lesiones Encefálicas/mortalidad , Adulto , Resultado del Tratamiento , Volumen de Ventilación Pulmonar
15.
Am J Respir Crit Care Med ; 209(5): 573-583, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163380

RESUMEN

Rationale: Psychological resilience (the ability to thrive in adversity) may protect against mental-health symptoms in healthcare professionals during coronavirus disease (COVID-19) waves. Objectives: To identify determinants of resilience in ICU staff members. Methods: In this cross-sectional survey in 21 French ICUs, staff members completed the 10-item Connor-Davidson Resilience Scale, Hospital Anxiety and Depression Scale, and Impact of Event Scale-Revised (for post-traumatic stress disorder [PTSD]). Factors independently associated with resilience were identified. Measurements and Main Results: The response rate was 73.1% (950 of 1,300). The median 10-item Connor-Davidson Resilience Scale score was 29 (interquartile range, 25-32). Symptoms of anxiety, depression, and PTSD were present in 61%, 39%, and 36% of staff members, respectively. Distress associated with the COVID-19 infodemic was correlated with symptoms of depression and PTSD. More resilient respondents less often had symptoms of anxiety, depression, and PTSD. Greater resilience was independently associated with male sex, having provided intensive care during the early waves, having managed more than 50 patients with COVID-19, and, compared with earlier waves, working longer hours, having greater motivation, and more often involving families in end-of-life decisions. Independent risk factors for lower resilience were having managed more than 10 patients who died of COVID-19, having felt frightened or isolated, and greater distress from the COVID-19 infodemic. Conclusions: This study identifies modifiable determinants of resilience among ICU staff members. Longitudinal studies are needed to determine whether prior resilience decreases the risk of mental ill health during subsequent challenges. Hospital and ICU managers, for whom preserving mental well-being among staff members is a key duty, should pay careful attention to resilience.


Asunto(s)
COVID-19 , Pruebas Psicológicas , Resiliencia Psicológica , Humanos , Masculino , Estudios Transversales , Unidades de Cuidados Intensivos , Muerte
16.
Am J Respir Crit Care Med ; 209(5): 543-552, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051944

RESUMEN

Rationale: Pulmonary complications contribute significantly to nonrelapse mortality following hematopoietic stem cell transplantation (HCT). Identifying patients at high risk can help enroll such patients into clinical studies to better understand, prevent, and treat posttransplantation respiratory failure syndromes. Objectives: To develop and validate a prediction model to identify those at increased risk of acute respiratory failure after HCT. Methods: Patients underwent HCT between January 1, 2019, and December 31, 2021, at one of three institutions. Those treated in Rochester, MN, formed the derivation cohort, and those treated in Scottsdale, AZ, or Jacksonville, FL, formed the validation cohort. The primary outcome was the development of acute respiratory distress syndrome (ARDS), with secondary outcomes including the need for invasive mechanical ventilation (IMV) and/or noninvasive ventilation (NIV). Predictors were based on prior case-control studies. Measurements and Main Results: Of 2,450 patients undergoing stem cell transplantation, there were 1,718 hospitalizations (888 patients) in the training cohort and 1,005 hospitalizations (470 patients) in the test cohort. A 22-point model was developed, with 11 points from prehospital predictors and 11 points from posttransplantation or early (<24-h) in-hospital predictors. The model performed well in predicting ARDS (C-statistic, 0.905; 95% confidence interval [CI], 0.870-0.941) and the need for IMV and/or NIV (C-statistic, 0.863; 95% CI, 0.828-0.898). The test cohort differed markedly in demographic, medical, and hematologic characteristics. The model also performed well in this setting in predicting ARDS (C-statistic, 0.841; 95% CI, 0.782-0.900) and the need for IMV and/or NIV (C-statistic, 0.872; 95% CI, 0.831-0.914). Conclusions: A novel prediction model incorporating data elements from the pretransplantation, posttransplantation, and early in-hospital domains can reliably predict the development of post-HCT acute respiratory failure.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Trasplante de Médula Ósea/efectos adversos , Lesión Pulmonar/complicaciones , Estudios de Cohortes , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/complicaciones , Insuficiencia Respiratoria/terapia
17.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38127779

RESUMEN

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Impedancia Eléctrica , Tomografía Computarizada por Rayos X/métodos , Pulmón , Insuficiencia Respiratoria/diagnóstico por imagen , Insuficiencia Respiratoria/terapia , Tomografía/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia
18.
Am J Respir Crit Care Med ; 209(12): 1441-1452, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354065

RESUMEN

Rationale: It is unknown whether preventing overdistention or collapse is more important when titrating positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS). Objectives: To compare PEEP targeting minimal overdistention or minimal collapse or using a compromise between collapse and overdistention in a randomized trial and to assess the impact on respiratory mechanics, gas exchange, inflammation, and hemodynamics. Methods: In a porcine model of ARDS, lung collapse and overdistention were estimated using electrical impedance tomography during a decremental PEEP titration. Pigs were randomized to three groups and ventilated for 12 hours: PEEP set at ⩽3% of overdistention (low overdistention), ⩽3% of collapse (low collapse), and the crossing point of collapse and overdistention. Measurements and Main Results: Thirty-six pigs (12 per group) were included. Median (interquartile range) values of PEEP were 7 (6-8), 11 (10-11), and 15 (12-16) cm H2O in the three groups (P < 0.001). With low overdistension, 6 (50%) pigs died, whereas survival was 100% in both other groups. Cause of death was hemodynamic in nature, with high transpulmonary vascular gradient and high epinephrine requirements. Compared with the other groups, pigs surviving with low overdistension had worse respiratory mechanics and gas exchange during the entire protocol. Minimal differences existed between crossing-point and low-collapse animals in physiological parameters, but postmortem alveolar density was more homogeneous in the crossing-point group. Inflammatory markers were not significantly different. Conclusions: PEEP to minimize overdistention resulted in high mortality in an animal model of ARDS. Minimizing collapse or choosing a compromise between collapse and overdistention may result in less lung injury, with potential benefits of the compromise approach.


Asunto(s)
Modelos Animales de Enfermedad , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria , Animales , Porcinos , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Atelectasia Pulmonar/terapia , Atelectasia Pulmonar/fisiopatología , Distribución Aleatoria , Mecánica Respiratoria/fisiología , Hemodinámica/fisiología , Femenino , Intercambio Gaseoso Pulmonar/fisiología
19.
Am J Respir Cell Mol Biol ; 71(5): 534-545, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38950166

RESUMEN

The relationship between the PD-L1 (Programmed Death-Ligand 1)/PD-1 pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 [n = 59] and ARDS2 [n = 78]) or plasma samples alone (ARDS3 [n = 149]) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from BAL fluid (n = 18) and blood (n = 16) from critically ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma concentrations of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher concentrations of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining than PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells than subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar versus blood compartments, given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1 or PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/sangre , Receptor de Muerte Celular Programada 1/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Líquido del Lavado Bronquioalveolar/inmunología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología , Citocinas/metabolismo , Citocinas/sangre
20.
Am J Respir Cell Mol Biol ; 71(1): 43-52, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38767348

RESUMEN

Mechanical ventilation contributes to the morbidity and mortality of patients in intensive care, likely through the exacerbation and dissemination of inflammation. Despite the proximity of the pleural cavity to the lungs and exposure to physical forces, little attention has been paid to its potential as an inflammatory source during ventilation. Here, we investigate the pleural cavity as a novel site of inflammation during ventilator-induced lung injury. Mice were subjected to low or high tidal volume ventilation strategies for up to 3 hours. Ventilation with a high tidal volume significantly increased cytokine and total protein levels in BAL and pleural lavage fluid. In contrast, acid aspiration, explored as an alternative model of injury, only promoted intraalveolar inflammation, with no effect on the pleural space. Resident pleural macrophages demonstrated enhanced activation after injurious ventilation, including upregulated ICAM-1 and IL-1ß expression, and the release of extracellular vesicles. In vivo ventilation and in vitro stretch of pleural mesothelial cells promoted ATP secretion, whereas purinergic receptor inhibition substantially attenuated extracellular vesicles and cytokine levels in the pleural space. Finally, labeled protein rapidly translocated from the pleural cavity into the circulation during high tidal volume ventilation, to a significantly greater extent than that of protein translocation from the alveolar space. Overall, we conclude that injurious ventilation induces pleural cavity inflammation mediated through purinergic pathway signaling and likely enhances the dissemination of mediators into the vasculature. This previously unidentified consequence of mechanical ventilation potentially implicates the pleural space as a focus of research and novel avenue for intervention in critical care.


Asunto(s)
Ratones Endogámicos C57BL , Cavidad Pleural , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Cavidad Pleural/metabolismo , Cavidad Pleural/patología , Inflamación/patología , Inflamación/metabolismo , Ratones , Respiración Artificial/efectos adversos , Volumen de Ventilación Pulmonar , Macrófagos/metabolismo , Macrófagos/patología , Adenosina Trifosfato/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA