Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38996528

RESUMEN

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.

2.
Physiol Rev ; 102(1): 455-510, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541899

RESUMEN

Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. Cancer is a multistep disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signaling in cancer in every step of disease progression. Rho GTPases contribute to tumor initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence, and cancer cell stemness. Rho GTPases play a major role in cell migration and in the metastatic process. They are also involved in interactions with the tumor microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Movimiento Celular/fisiología , Transformación Celular Neoplásica/inmunología , Humanos , Transducción de Señal/genética
3.
Proc Natl Acad Sci U S A ; 121(22): e2318248121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787878

RESUMEN

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.


Asunto(s)
Movimiento Celular , Matriz Extracelular , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Proteína de Unión al GTP rac1/metabolismo , Humanos , Polaridad Celular/fisiología , Modelos Biológicos , Animales , Adhesión Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/fisiología
4.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180080

RESUMEN

RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.


Asunto(s)
Neoplasias de la Próstata , Proteínas de Unión al GTP rho , Humanos , Masculino , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(22): e2219854120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216516

RESUMEN

During the intricate process by which cells give rise to tissues, embryonic and adult stem cells are exposed to diverse mechanical signals from the extracellular matrix (ECM) that influence their fate. Cells can sense these cues in part through dynamic generation of protrusions, modulated and controlled by cyclic activation of Rho GTPases. However, it remains unclear how extracellular mechanical signals regulate Rho GTPase activation dynamics and how such rapid, transient activation dynamics are integrated to yield long-term, irreversible cell fate decisions. Here, we report that ECM stiffness cues alter not only the magnitude but also the temporal frequency of RhoA and Cdc42 activation in adult neural stem cells (NSCs). Using optogenetics to control the frequency of RhoA and Cdc42 activation, we further demonstrate that these dynamics are functionally significant, where high- vs. low-frequency activation of RhoA and Cdc42 drives astrocytic vs. neuronal differentiation, respectively. In addition, high-frequency Rho GTPase activation induces sustained phosphorylation of the TGFß pathway effector SMAD1, which in turn drives the astrocytic differentiation. By contrast, under low-frequency Rho GTPase stimulation, cells fail to accumulate SMAD1 phosphorylation and instead undergo neurogenesis. Our findings reveal the temporal patterning of Rho GTPase signaling and the resulting accumulation of an SMAD1 signal as a critical mechanism through which ECM stiffness cues regulate NSC fate.


Asunto(s)
Células-Madre Neurales , Proteínas de Unión al GTP rho , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Diferenciación Celular , Transducción de Señal , Neurogénesis , Células-Madre Neurales/metabolismo
6.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703997

RESUMEN

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Asunto(s)
Proteínas Bacterianas , Tirosina , Yersinia , Glicosilación , Humanos , Yersinia/metabolismo , Yersinia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Tirosina/metabolismo , Tirosina/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Proteína de Unión al GTP rhoA/metabolismo , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/genética , Animales , Células HeLa , Ratones , Cristalografía por Rayos X , Yersiniosis/metabolismo , Yersiniosis/microbiología
7.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35616334

RESUMEN

The extensive morphological changes of oligodendrocytes during axon ensheathment and myelination involve assembly of the Ilk-Parvin-Pinch (IPP) heterotrimeric complex of proteins to relay essential mechanical and biochemical signals between integrins and the actin cytoskeleton. Binding of Pinch1 and Pinch2 isoforms to Ilk is mutually exclusive and allows the formation of distinct IPP complexes with specific signaling properties. Using tissue-specific conditional gene ablation in mice, we reveal an essential role for Pinch2 during central nervous system myelination. Unlike Pinch1 gene ablation, loss of Pinch2 in oligodendrocytes results in hypermyelination and in the formation of pathological myelin outfoldings in white matter regions. These structural changes concur with inhibition of Rho GTPase RhoA and Cdc42 activities and phenocopy aspects of myelin pathology observed in corresponding mouse mutants. We propose a dual role for Pinch2 in preventing an excess of myelin wraps through RhoA-dependent control of membrane growth and in fostering myelin stability via Cdc42-dependent organization of cytoskeletal septins. Together, these findings indicate that IPP complexes containing Pinch2 act as a crucial cell-autonomous molecular hub ensuring synchronous control of key signaling networks during developmental myelination.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Sistema Nervioso Central , Citoesqueleto , Ratones , Vaina de Mielina , Oligodendroglía , Transducción de Señal/genética
8.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414014

RESUMEN

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Asunto(s)
Vasos Linfáticos , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citoesqueleto/metabolismo
9.
Traffic ; 23(2): 120-136, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34908215

RESUMEN

Cell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organization and secretion. Here, we use a genetic approach to characterize the effect on late steps of the secretory pathway. The constitutive overexpression of PSI1 in mutants affecting kinases involved in the phosphoinositide pathway demonstrated the role of molecular species containing stearic acid in bypassing a lack of phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane, which is essential for the function of the Cdc42p module. Decreasing the levels of stearic acid-containing phosphoinositides modifies the environment of the actors involved in the control of late steps in the secretory pathway. This leads to decreased interactions between Exo70p and Sec3p, with Cdc42p, Rho1p and Rho3p, because of disruption of the GTP/GDP ratio of at least Rho1p and Rho3p GTPases, thereby preventing activation of the exocyst.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Exocitosis/fisiología , Fosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácidos Esteáricos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rho/genética
10.
Semin Cell Dev Biol ; 129: 75-81, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397972

RESUMEN

Cell migration is necessary for morphogenesis, tissue homeostasis, wound healing and immune response. It is also involved in diseases. In particular, cell migration is inherent in metastasis. Cells can migrate individually or in groups. To migrate efficiently, cells need to be able to organize into a leading front that protrudes by forming membrane extensions and a trailing edge that contracts. This organization is scaled up at the group level during collective cell movements. If a cell or a group of cells is unable to limit its leading edge and hence to restrict the formation of protrusions to the front, directional movements are impaired or abrogated. Here we summarize our current understanding of the mechanisms restricting protrusion formation in collective cell migration. We focus on three in vivo examples: the neural crest cell migration, the rotatory migration of follicle cells around the Drosophila egg chamber and the border cell migration during oogenesis.


Asunto(s)
Proteínas de Drosophila , Animales , Movimiento Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Morfogénesis , Oogénesis
11.
Semin Cell Dev Biol ; 129: 63-74, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577698

RESUMEN

Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.


Asunto(s)
Actinas , Desarrollo Embrionario , Actinas/metabolismo , Animales , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Endodermo , Femenino , Gastrulación , Humanos , Mesodermo , Ratones , Embarazo
12.
J Biol Chem ; 299(4): 104593, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894017

RESUMEN

Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homolog RhoA, increase ∼10-fold in 5 to 8 h. We determined that the depletion of RhoB, but not of RhoA, the inhibition of actin contractility, and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact is essential to preserve monolayer integrity.


Asunto(s)
Actinas , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Células Endoteliales/metabolismo , Proteostasis , Proteína de Unión al GTP rhoA/metabolismo , Endotelio Vascular/metabolismo , Células Cultivadas
13.
J Biol Chem ; 299(6): 104749, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100284

RESUMEN

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Asunto(s)
Antivirales , COVID-19 , Mpox , Vaccinia , Animales , Ratones , Antivirales/farmacología , Mpox/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Vaccinia/tratamiento farmacológico , Virus Vaccinia/efectos de los fármacos
14.
Int J Cancer ; 155(7): 1303-1315, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38898604

RESUMEN

Metastatic cutaneous melanoma is a fatal skin cancer. Resistance to targeted and immune therapies limits the benefits of current treatments. Identifying and adding anti-resistance agents to current treatment protocols can potentially improve clinical responses. Myocardin-related transcription factor (MRTF) is a transcriptional coactivator whose activity is indirectly regulated by actin and the Rho family of GTPases. We previously demonstrated that development of BRAF inhibitor (BRAFi) resistance frequently activates the Rho/MRTF pathway in human and mouse BRAFV600E melanomas. In clinical trials, pretreatment with BRAFi reduces the benefit of immune therapies. We aimed to test the efficacy of concurrent treatment with our MRTF pathway inhibitor CCG-257081 and anti-PD1 in vivo and to examine its effects on the melanoma immune microenvironment. Because MRTF pathway activation upregulates the expression of immune checkpoint inhibitor genes/proteins, we asked whether CCG-257081 can improve the response to immune checkpoint blockade. CCG-257081 reduced the expression of PDL1 in BRAFi-resistant melanoma cells and decreased surface PDL1 levels on both BRAFi-sensitive and -resistant melanoma cells. Using our recently described murine vemurafenib-resistant melanoma model, we found that CCG-257081, in combination with anti-PD1 immune therapy, reduced tumor growth and increased survival. Moreover, anti-PD1/CCG-257081 co-treatment increased infiltration of CD8+ T cells and B cells into the tumor microenvironment and reduced tumor-associated macrophages. Here, we propose CCG-257081 as an anti-resistance and immune therapy-enhancing anti-melanoma agent.


Asunto(s)
Antígeno B7-H1 , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Melanoma , Proteínas Proto-Oncogénicas B-raf , Neoplasias Cutáneas , Microambiente Tumoral , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Animales , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Ratones , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Femenino , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
15.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36111497

RESUMEN

Attainment of proper cell shape and the regulation of cell migration are essential processes in the development of an organism. The mixed lineage leukemia (MLL or KMT2A) protein, a histone 3 lysine 4 (H3K4) methyltransferase, plays a critical role in cell-fate decisions during skeletal development and haematopoiesis in higher vertebrates. Rho GTPases - RhoA, Rac1 and CDC42 - are small G proteins that regulate various key cellular processes, such as actin cytoskeleton formation, the maintenance of cell shape and cell migration. Here, we report that MLL regulates the homeostasis of these small Rho GTPases. Loss of MLL resulted in an abnormal cell shape and a disrupted actin cytoskeleton, which lead to diminished cell spreading and migration. MLL depletion affected the stability and activity of Rho GTPases in a SET domain-dependent manner, but these Rho GTPases were not direct transcriptional targets of MLL. Instead, MLL regulated the transcript levels of their chaperone protein RhoGDI1 (also known as ARHGDIA). Using MDA-MB-231, a triple-negative breast cancer cell line with high RhoGDI1 expression, we show that MLL depletion or inhibition by small molecules reduces tumour progression in nude mice. Our studies highlight the central regulatory role of MLL in Rho/Rac/CDC42 signalling pathways. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Unión al GTP rho , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Ratones , Animales , Inhibidor alfa de Disociación del Nucleótido Guanina rho/genética , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Ratones Desnudos , Histonas/metabolismo , Lisina , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular/fisiología , Citoesqueleto de Actina/metabolismo , Metiltransferasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo
16.
J Transl Med ; 22(1): 122, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297333

RESUMEN

BACKGROUND: Emerging evidence suggests that Rho GTPases play a crucial role in tumorigenesis and metastasis, but their involvement in the tumor microenvironment (TME) and prognosis of hepatocellular carcinoma (HCC) is not well understood. METHODS: We aim to develop a tumor prognosis prediction system called the Rho GTPases-related gene score (RGPRG score) using Rho GTPase signaling genes and further bioinformatic analyses. RESULTS: Our work found that HCC patients with a high RGPRG score had significantly worse survival and increased immunosuppressive cell fractions compared to those with a low RGPRG score. Single-cell cohort analysis revealed an immune-active TME in patients with a low RGPRG score, with strengthened communication from T/NK cells to other cells through MIF signaling networks. Targeting these alterations in TME, the patients with high RGPRG score have worse immunotherapeutic outcomes and decreased survival time in the immunotherapy cohort. Moreover, the RGPRG score was found to be correlated with survival in 27 other cancers. In vitro experiments confirmed that knockdown of the key Rho GTPase-signaling biomarker SFN significantly inhibited HCC cell proliferation, invasion, and migration. CONCLUSIONS: This study provides new insight into the TME features and clinical use of Rho GTPase gene pattern at the bulk-seq and single-cell level, which may contribute to guiding personalized treatment and improving clinical outcome in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogénesis , Línea Celular , Inmunosupresores , Proteínas de Unión al GTP rho , Microambiente Tumoral
17.
Biochem Soc Trans ; 52(1): 89-97, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38314621

RESUMEN

RhoU and RhoV are members of the Rho family of small GTPases that comprise their own subfamily. RhoUV GTPases are classified as atypical due to the kinetics of their GTP/GDP binding cycles. They also possess unique N- and C-termini that regulate their subcellular localization and activity. RhoU and RhoV have been linked to cytoskeletal regulation, cell adhesion, and cell migration. They each exhibit distinct expression patterns during embryonic development and diseases such as cancer metastasis, suggesting they have specialized functions. In this review, we will discuss the known functions of RhoU and RhoV, with a focus on their roles in early development, organogenesis, and disease.


Asunto(s)
Proteínas de Unión al GTP , Proteínas de Unión al GTP rho , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal , Adhesión Celular
18.
Pharmacol Res ; 203: 107165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561112

RESUMEN

The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.


Asunto(s)
Aminoquinolinas , Doxorrubicina , Células Endoteliales , Fibroblastos , Miocitos Cardíacos , Pirimidinas , Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína de Unión al GTP cdc42/metabolismo , Doxorrubicina/toxicidad , Doxorrubicina/efectos adversos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Células Endoteliales/metabolismo , Cardiotoxicidad , Antibióticos Antineoplásicos/toxicidad , Ratones , Apoptosis/efectos de los fármacos , Masculino , Humanos , Ratones Endogámicos C57BL , Roturas del ADN de Doble Cadena/efectos de los fármacos , Neuropéptidos/metabolismo , Daño del ADN/efectos de los fármacos , Células Cultivadas
19.
Mol Biol Rep ; 51(1): 141, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236467

RESUMEN

Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.


Asunto(s)
Neoplasias , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/genética , Neoplasias/genética
20.
Mar Drugs ; 22(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38393059

RESUMEN

Anithiactin D (1), a 2-phenylthiazole class of natural products, was isolated from marine mudflat-derived actinomycetes Streptomyces sp. 10A085. The chemical structure of 1 was elucidated based on the interpretation of NMR and MS data. The absolute configuration of 1 was determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectral data. Anithiactin D (1) significantly decreased cancer cell migration and invasion activities at a concentration of 5 µM via downregulation of the epithelial-to-mesenchymal transition (EMT) markers in A549, AGS, and Caco-2 cell lines. Moreover, 1 inhibited the activity of Rho GTPases, including Rac1 and RhoA in the A549 cell line, suppressed RhoA in AGS and Caco-2 cell lines, and decreased the mRNA expression levels of some matrix metalloproteinases (MMPs) in AGS and Caco-2 cell lines. Thus 1, which is a new entity of the 2-phenylthiazole class of natural products with a unique aniline-indole fused moiety, is a potent inhibitor of the motility of cancer cells.


Asunto(s)
Neoplasias , Streptomyces , Humanos , Línea Celular Tumoral , Células CACO-2 , Streptomyces/metabolismo , Células A549 , Proteínas de Unión al GTP rho/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA