RESUMEN
The Ccr4-Not complex regulates essentially every aspect of gene expression, from mRNA synthesis to protein destruction. The Not4 subunit of the complex contains an E3 RING domain and targets proteins for ubiquitin-dependent proteolysis. Ccr4-Not associates with elongating RNA polymerase II (RNAPII), which raises the possibility that it controls the degradation of elongation complex components. Here, we demonstrate that Ccr4-Not controls the ubiquitylation and turnover of Rpb1, the largest subunit of RNAPII, during transcription arrest. Deleting NOT4 or mutating its RING domain strongly reduced the DNA damage-dependent ubiquitylation and destruction of Rpb1. Surprisingly, in vitro ubiquitylation assays indicate that Ccr4-Not does not directly ubiquitylate Rpb1 but instead promotes Rpb1 ubiquitylation by the HECT domain-containing ligase Rsp5. Genetic analyses suggest that Ccr4-Not acts upstream of RSP5, where it acts to initiate the destruction process. Ccr4-Not binds Rsp5 and forms a ternary complex with it and the RNAPII elongation complex. Analysis of mutant Ccr4-Not lacking the RING domain of Not4 suggests that it both recruits Rsp5 and delivers the E2 Ubc4/5 to RNAPII. Our work reveals a previously unknown function of Ccr4-Not and identifies an essential new regulator of RNAPII turnover during genotoxic stress.
Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Mutantes/metabolismo , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/genética , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
The proteasome is central to proteolysis by the ubiquitin-proteasome system under normal growth conditions but is itself degraded through macroautophagy under nutrient stress. A recently described AMP-activated protein kinase (AMPK)-regulated endosomal sorting complex required for transport (ESCRT)-dependent microautophagy pathway also regulates proteasome trafficking and degradation in low-glucose conditions in yeast. Aberrant proteasomes are more prone to microautophagy, suggesting the ESCRT system fine-tunes proteasome quality control under low-glucose stress. Here, we uncover additional features of the selective microautophagy of proteasomes in budding yeast. Genetic or pharmacological induction of aberrant proteasomes is associated with increased mono- or oligo-ubiquitylation of proteasome components, which appears to be recognized by ESCRT-0. AMPK controls this pathway in part by regulating the trafficking of ESCRT-0 to the vacuole surface, which also leads to degradation of the Vps27 subunit of ESCRT-0. The Rsp5 ubiquitin ligase contributes to proteasome subunit ubiquitylation, and multiple ubiquitin-binding elements in Vps27 are involved in their recognition. We propose that ESCRT-0 at the vacuole surface recognizes ubiquitylated proteasomes and initiates their microautophagic elimination during glucose depletion. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Microautofagia , Proteínas de Saccharomyces cerevisiae , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , UbiquitinaciónRESUMEN
Cells rapidly remodel their proteomes to align their cellular metabolism to environmental conditions. Ubiquitin E3 ligases enable this response, by facilitating rapid and reversible changes to protein stability, localization, or interaction partners. In Saccharomyces cerevisiae, the GID E3 ligase regulates the switch from gluconeogenic to glycolytic conditions through induction and incorporation of the substrate receptor subunit Gid4, which promotes the degradation of gluconeogenic enzymes. Here, we show an alternative substrate receptor, Gid10, which is induced in response to changes in temperature, osmolarity, and nutrient availability, regulates the ART-Rsp5 ubiquitin ligase pathway, a component of plasma membrane quality control. Proteomic studies reveal that the levels of the adaptor protein Art2 are elevated upon GID10 deletion. A crystal structure shows the basis for Gid10-Art2 interactions, and we demonstrate that Gid10 directs a GID E3 ligase complex to ubiquitinate Art2. Our data suggest that the GID E3 ligase affects Art2-dependent amino acid transport. This study reveals GID as a system of E3 ligases with metabolic regulatory functions outside of glycolysis and gluconeogenesis, controlled by distinct stress-specific substrate receptors.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejos de Ubiquitina-Proteína Ligasa , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
AIMS: This study aimed to establish a yeast-based screening system for potential compounds that can alleviate the toxicity of α-synuclein (α-syn), a neuropathological hallmark of Parkinson's disease, either inhibition of α-syn aggregation or promotion of ubiquitin-mediated degradation of α-syn. METHODS AND RESULTS: A powerful yeast-based screening assay using the rsp5A401E -mutant strain, which is hypersensitive to α-syn aggregation, was established by two-step gene replacement and further overexpressed the GFP-fused α-syn in the drug-sensitive yeast strain with a galactose-inducible multicopy plasmid. The rsp5A401E -mutant strain treated with baicalein, a known α-syn aggregation inhibitor, showed better α-syn toxicity alleviation than the same background wild type strain as accessed by comparison on the reduction kinetics of viable dye resazurin fluorometrically (λex 540/λem 590 nm). The rsp5A401E -mutant yeast-based assay system showed high sensitivity as it could detect as low as 3.13 µmol l-1 baicalein, the concentration that lower than previously report detected by the in vitro assay. CONCLUSIONS: Our yeast-based system has been effective for screening potential compounds that can alleviate α-syn toxicity with high sensitivity and specificity. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeast-based assay system can be used to discover novel neuroprotective drug candidates which may be either efficiently suppress-α-syn aggregation or enhance ubiquitin-dependent degradation.
Asunto(s)
Enfermedad de Parkinson , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/genéticaRESUMEN
Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac IKS potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the IKS channel, thus confirming the functional importance of E3-ligase autoinhibition.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Microfilamentos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Proteínas de Microfilamentos/química , Ubiquitina-Proteína Ligasas Nedd4 , Canales de Potasio con Entrada de Voltaje/química , Complejo de la Endopetidasa Proteasomal/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Proteínas de Saccharomyces cerevisiae/químicaRESUMEN
Ubiquitination is a key signal for endocytosis of proteins on the plasma membrane. The ubiquitin ligase Rsp5 of Saccharomyces cerevisiae, which contains an amino-terminal membrane-binding C2 domain, three substrate-recognizing tryptophan-tryptophan (WW) domains and a carboxyl-terminal catalytic homologous to the E6-AP carboxyl terminus (HECT) domain, can ubiquitinate plasma membrane proteins directing them for endocytosis. Here, we examined the roles of the C2 domain in endocytosis for the downregulation of the general amino acid permease Gap1, which is one of nitrogen-regulated permeases in S. cerevisiae. First, we constructed several rsp5 mutants producing Rsp5 variants without the C2 domain or with amino acid changes of membrane-binding lysine residues. These mutants showed defects in endocytosis of Gap1 in response to a preferred nitrogen source. Intriguingly, we found that ubiquitination of Gap1 in these mutant cells was highly similar to that in wild-type cells during endocytosis. These results indicate that the C2 domain is essential for endocytosis but not for ubiquitination of substrates such as Gap1. Moreover, genetic and biochemical analyses showed that the endocytic protein Rvs167 was ubiquitinated via Rsp5 and the C2 domain was required for efficient ubiquitination in response to a preferred nitrogen source. Here, we propose a mechanism for the C2 domain-mediated endocytosis of plasma membrane permeases.
Asunto(s)
Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Microfilamentos/metabolismo , Nitrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Dominios C2 , UbiquitinaciónRESUMEN
The isolation, identification and characterization of a novel huperzine A (HupA)-producing fungal strain Rsp5.2 isolated from Huperzia serrata (Thunb. ex Murray) Trev. in Vietnam. The fifty-eight endophytic fungi were recovered from roots of natural H. serrata in Lao Cai province of northern Vietnam and screened for HupA-producing by thin-layer chromatography (TLC). The only one of the 58 strains, Rsp5.2, could produce HupA. The amount of HupA produced by Rsp5.2 was quantified to be 19.45 µg g-1 dried mycelium by high-performance liquid chromatography (HPLC). Acetylcholine esterase (AchE) inhibition (IC50) of the crude HupA extract from Rsp5.2 fermentation broth was 2.849 ± 0.0026 µg mL-1. The fungus was identified as Fusarium sp. Rsp5.2 by morphological characteristics and Internal Transcribed Spacer (ITS) sequences. This is the first report of Fusarium sp. as a HupA-producing endophyte isolated from H. serrata.
Asunto(s)
Alcaloides/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Fusarium , Huperzia/microbiología , Sesquiterpenos/metabolismo , Alcaloides/análisis , Inhibidores de la Colinesterasa/análisis , Cromatografía Líquida de Alta Presión , Fusarium/citología , Fusarium/aislamiento & purificación , Fusarium/metabolismo , Micelio/metabolismo , Sesquiterpenos/análisis , VietnamRESUMEN
In response to changes in nutrient conditions, cells rearrange the composition of plasma membrane (PM) transporters to optimize their metabolic flux. Not only transcriptional gene regulation, but also inactivation of specific transporters is important for fast rearrangement of the PM. In eukaryotic cells, endocytosis plays a role in transporter inactivation, which is triggered by ubiquitination of these transporters. The Nedd4 family E3 ubiquitin ligase is responsible for ubiquitination of the PM transporters and requires that a series of α-arrestin proteins are targeted to these transporters. The mechanism by which an α-arrestin recognizes its cognate transporters in response to environmental signals is of intense scientific interest. Excess substrates or signal transduction pathways are known to initiate recognition of transporters by α-arrestins. Here, we identified an endocytic-sorting signal in the monocarboxylate transporter Jen1 from yeast (Saccharomyces cerevisiae), whose endocytic degradation depends on the Snf1-glucose signaling pathway. We found that the C-terminal 20-amino acid-long region of Jen1 contains an amino acid sequence required for association of Jen1 to the α-arrestin Rod1, as well as lysine residues important for glucose-induced Jen1 ubiquitination. Notably, fusion of this region to the methionine permease, Mup1, whose endocytosis is normally induced by excess methionine, was sufficient for Mup1 to undergo glucose-induced, Rod1-mediated endocytosis. Taken together, our results demonstrate that the Jen1 C-terminal region acts as a glucose-responding degron for α-arrestin-mediated endocytic degradation of Jen1.
Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Proteínas de la Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo , Ubiquitina/metabolismo , Membrana Celular/metabolismo , Endocitosis , Proteínas de la Membrana/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Simportadores/genética , UbiquitinaciónRESUMEN
Sodium and acetate inhibit cell growth and ethanol fermentation by different mechanisms in Saccharomyces cerevisiae. We identified the substitution of a conserved Thr255 to Ala (T255A) in the essential Nedd4-family ubiquitin ligase Rsp5, which enhances cellular sodium acetate tolerance. The T255A mutation selectively increased the resistance of cells against sodium acetate, suggesting that S. cerevisiae cells possess an Rsp5-mediated mechanism to cope with the composite stress of sodium and acetate. The sodium acetate tolerance was dependent on the extrusion of intracellular sodium ions by the plasma membrane-localized sodium pumps Ena1, Ena2, and Ena5 (Ena1/2/5) and two known upstream regulators: the Rim101 pH signaling pathway and the Hog1 mitogen-activated protein kinase. However, the T255A mutation affected neither the ubiquitination level of the Rsp5 adaptor protein Rim8 nor the phosphorylation level of Hog1. These data raised the possibility that Rsp5 enhances the function of Ena1/2/5 specifically in response to sodium acetate through an unknown mechanism other than ubiquitination of Rim8 and activation of Hog1-mediated signaling. Also, an industrial yeast strain that expresses the T255A variant exhibited increased initial fermentation rates in the presence of sodium acetate. Hence, this mutation has potential for the improvement of bioethanol production from lignocellulosic biomass.
Asunto(s)
Antifúngicos/metabolismo , Tolerancia a Medicamentos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mutación Missense , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Acetato de Sodio/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismoRESUMEN
Despite being a common mechanism in eukaryotes, the process by which protein monoubiquitination is produced and regulated in vivo is not completely understood. We present here the analysis of the process of monoubiquitination of the proteasomal subunit Rpn10 (regulatory particle non-ATPase 10), involved in the recruitment of polyubiquitinated substrates. Rpn10 is monoubiquitinated in vivo by the Nedd4 (neural precursor cell expressed developmentally down-regulated 4) enzyme Rsp5 (reverses SPT-phenotype protein 5) and this modification impairs the interaction of Rpn10 with substrates, having a regulatory effect on proteasome function. Remarkably, a disordered region near the ubiquitin-interacting motif of Rpn10 plays a role in the restriction of the polyubiquitin extension activity of Rsp5. Mutations in this disordered region promote ubiquitin chain extension of Rpn10. Thus, our work sheds light on the molecular basis and the functional relevance of a type of monoubiquitination that is driven by the substrate. Moreover, we uncover a putative role for disordered regions in modulating ubiquitin-protein ligation.
Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , UbiquitinaciónRESUMEN
Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments.
Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Respuesta al Choque Térmico , Factores de Terminación de Péptidos/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Portadoras/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Factores de Terminación de Péptidos/genética , Priones/genética , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
The ubiquitin ligase Rsp5, which is the only yeast Saccharomyces cerevisiae member of the Nedd4-family, recognizes and ubiquitinates various substrate proteins through the functions of three conserved WW domains. To elucidate the role of each WW domain in endocytosis of the general amino acid permease Gap1 via interaction with the arrestin-like adaptor proteins Bul1 and Bul2 (Bul1/2), we investigated the effects of the double mutations that abrogate the recognition of PY motifs on target proteins (rsp5(W257F/P260A), rsp5(W359F/P362A), and rsp5(W415F/P418A)) and the alanine substitutions of the conserved threonine residues that are regarded as putative phosphorylation sites (rsp5(T255A), RSP5(T357A), and rsp5(T413A)), both of which are located within each WW domain. The rsp5(W257F/P260A), rsp5(W359F/P362A), and rsp5(W415F/P418A) mutations increased sensitivity to the proline analog azetidine-2-carboxylate (AZC), defective endocytosis of Gap1, and impaired interactions with Bul1. These results demonstrate that molecular recognition by each WW domain is responsible for the cooperative interaction with Bul1. Intriguingly, the RSP5(T357A) mutation enhanced AZC tolerance and endocytosis of Gap1, although rsp5(T255A) and rsp5(T413A) decreased both of them. While rsp5(T255A), RSP5(T357A), and rsp5(T413A) impaired the interaction of Rsp5 with Bul1, the RSP5(T357A) mutation specifically augmented the interaction with Bul2. The AZC tolerance enhanced by RSP5(T357A) was fully abolished by combining with each of the rsp5(W257F/P260A), rsp5(W359F/P362A), or rsp5(W415F/P418A) mutations. It was thus suggested that Thr357 in the WW2 domain has a unique role in preventing from the constitutive activation of Bul1/2-mediated endocytosis of Gap1. Taken together, our results highlight the cooperative and specific roles of WW domains in the regulation of Bul1/2-mediated cellular events.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Dominio Catalítico/genética , Secuencia Conservada , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Genes Fúngicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Rsp5 ubiquitin ligase is required for ubiquitination of a wide variety of proteins involved in essential processes. Rsp5 was shown to be involved in regulation of lipid biosynthesis, intracellular trafficking of proteins, response to various stresses, and many other processes. In this article, we provide a comprehensive review of the nuclear and cytoplasmic functions of Rsp5 with a focus on biogenesis of different RNAs. We also briefly describe the participation of Rsp5 in the regulation of the RNA polymerase II complex, and its potential role in the regulation of other RNA polymerases. Moreover, we emphasize the function of Rsp5 in the coordination of the different steps of rRNA, mRNA and tRNA metabolism in the context of protein biosynthesis. Finally, we highlight the involvement of Rsp5 in controlling diverse cellular mechanisms at multiple levels and in adaptation of the cell to changing growth conditions.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , ARN Mensajero/biosíntesis , ARN Ribosómico/biosíntesis , ARN de Transferencia/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN Ribosómico/genética , ARN de Transferencia/genéticaRESUMEN
The length of the ubiquitin chain on a substrate dictates various functional outcomes, yet little is known about its regulation in vivo. The yeast arrestin-related protein Rim8/Art9 is monoubiquitinated in vivo by the Rsp5 ubiquitin ligase. This also requires Vps23, a protein that displays an ubiquitin-E2 variant (UEV) domain. Here, we report that binding of the UEV domain to Rim8 interferes with ubiquitin chain elongation and directs Rim8 monoubiquitination. We propose that Vps23 UEV competes with Rsp5 HECT N-lobe for binding to the first conjugated ubiquitin, thereby preventing polyubiquitination. These findings reveal a novel mechanism to control ubiquitin chain length on substrates in vivo.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Proteínas de Ciclo Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética , Complejos de Ubiquitina-Proteína Ligasa/genéticaRESUMEN
We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutatedâup to 37 of 76 residuesârecombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismoRESUMEN
Arsenite causes proteotoxicity by targeting nascent proteins for misfolding and aggregation. Here, we assessed how selected yeast chaperones and ubiquitin ligases contribute to proteostasis during arsenite stress. Loss of the ribosome-associated chaperones Zuo1, Ssz1, and Ssb1/Ssb2 reduced global translation and protein aggregation, and increased arsenite resistance. Loss of cytosolic GimC/prefoldin function led to defective aggregate clearance and arsenite sensitivity. Arsenite did not induce ribosomal stalling or impair ribosome quality control, and ribosome-associated ubiquitin ligases contributed little to proteostasis. Instead, the cytosolic ubiquitin ligase Rsp5 was important for aggregate clearance and resistance. Our study suggests that damage prevention, by decreased aggregate formation, and damage elimination, by enhanced aggregate clearance, are important protective mechanisms that maintain proteostasis during arsenite stress.
Asunto(s)
Arsenitos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Agregado de Proteínas , Ubiquitina/metabolismo , Proteostasis , Ubiquitina-Proteína Ligasas/metabolismo , Arsenitos/toxicidad , Arsenitos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Tryptophan is a relatively rare amino acid whose influx is strictly controlled to meet cellular demands. The yeast Saccharomyces cerevisiae has two tryptophan permeases, namely Tat1 (low-affinity type) and Tat2 (high-affinity type). These permeases are differentially regulated through ubiquitination based on inducible conditions and dependence on arrestin-related trafficking adaptors, although the physiological significance of their degradation remain unclear. Here, we demonstrated that Tat2 was rapidly degraded in an Rsp5-Bul1-dependent manner upon the addition of tryptophan, phenylalanine, or tyrosine, whereas Tat1 was unaffected. The expression of the ubiquitination-deficient variant Tat25K>R led to a reduction in cell yield at 4 µg/mL tryptophan, suggesting the occurrence of an uncontrolled, excessive consumption of tryptophan at low tryptophan concentrations. Eisosomes are membrane furrows that are thought to be storage compartments for some nutrient permeases. Tryptophan addition caused rapid Tat2 dissociation from eisosomes, whereas Tat1 distribution was unaffected. The 5 K > R mutation had no marked effect on Tat2 dissociation, suggesting that dissociation is independent of ubiquitination. Interestingly, the D74R mutation, which was created within the N-terminal acidic patch, stabilized Tat2 while reducing the degree of partitioning into eisosomes. Moreover, the hyperactive I285V mutation in Tat2, which increases Vmax/Km for tryptophan import by 2-fold, reduced the degree of segregation into eisosomes. Our findings illustrate the coordinated activity of Tat1 and Tat2 in the regulation of tryptophan transport at various tryptophan concentrations and suggest the positive role of substrates in inducing a conformational transition in Tat2, resulting in its dissociation from eisosomes and subsequent ubiquitination-dependent degradation.
Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Triptófano/química , Triptófano/metabolismo , Tirosina/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , UbiquitinaciónRESUMEN
Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY motif containing adaptor proteins. Several arrestin-related trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63-linked di-ubiquitination by Rsp5. This modification enhances the plasma membrane recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the pombe orthologs of Rsp5 and Art1, Pub1, and Any1. Furthermore, we discover that the homologous to E6AP C-terminus (HECT) domain exosite protects the K63-linked di-ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment, and activity of Rsp5 for the turnover of membrane proteins.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
Protein quality control (PQC) machineries play a critical role in selective identification and removal of mistargeted, misfolded, and aberrant proteins. This task is extremely complicated due to the enormous diversity of the proteome. It also requires nuanced and careful differentiation between 'normal' and 'folding intermediates' from 'abnormal' and 'misfolded' protein states. Multiple genetic and proteomic approaches have started to delineate the molecular underpinnings of how these machineries recognize their target and how their activity is regulated. In this review, we summarize our understanding of the various E3 ubiquitin ligases and associated machinery that mediate PQC in the endo-lysosome system in yeast and humans, how they are regulated, and mechanisms of target selection, with the intent of guiding future research in this area.
Asunto(s)
Proteínas de la Membrana , Proteómica , Humanos , Lisosomas , Saccharomyces cerevisiae/genética , UbiquitinaciónRESUMEN
Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.