RESUMEN
Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.
Asunto(s)
Hormona de Crecimiento Humana , Neoplasias , Humanos , Hormona del Crecimiento/metabolismo , Transducción de Señal/fisiología , Janus Quinasa 2/metabolismo , Hormona de Crecimiento Humana/metabolismo , Receptores de Somatotropina/metabolismo , Fosforilación , Obesidad , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
This study mainly explored the effect and mechanism of Src homology 2 (SH2) B adaptor protein 1 (SH2B1) on cardiac glucose metabolism during pressure overload-induced cardiac hypertrophy and dysfunction. A pressure-overloaded cardiac hypertrophy model was constructed, and SH2B1-siRNA was injected through the tail vein. Haematoxylin and eosin (H&E) staining was used to detect myocardial morphology. ANP, BNP, ß-MHC and the diameter of myocardial fibres were quantitatively measured to evaluate the degree of cardiac hypertrophy, respectively. GLUT1, GLUT4, and IR were detected to assess cardiac glucose metabolism. Cardiac function was determined by echocardiography. Then, glucose oxidation and uptake, glycolysis and fatty acid metabolism were assessed in Langendorff perfusion of hearts. Finally, PI3K/AKT activator was used to further explore the relevant mechanism. The results showed that during cardiac pressure overload, with the aggravation of cardiac hypertrophy and dysfunction, cardiac glucose metabolism and glycolysis increased, and fatty acid metabolism decreased. After SH2B1-siRNA transfection, cardiac SH2B1 expression was knocked down, and the degree of cardiac hypertrophy and dysfunction was alleviated compared with the Control-siRNA transfected group. Simultaneously, cardiac glucose metabolism and glycolysis were reduced, and fatty acid metabolism was enhanced. The SH2B1 expression knockdown mitigated the cardiac hypertrophy and dysfunction by reducing cardiac glucose metabolism. After using PI3K/AKT activator, the effect of SH2B1 expression knockdown on cardiac glucose metabolism was reversed during cardiac hypertrophy and dysfunction. Collectively, SH2B1 regulated cardiac glucose metabolism by activating the PI3K/AKT pathway during pressure overload-induced cardiac hypertrophy and cardiac dysfunction.
Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Cardiomegalia/metabolismo , Miocardio/metabolismo , Glucosa/metabolismo , ARN Interferente Pequeño/genética , Ácidos Grasos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
PURPOSE: To determine correlation between genetic susceptibility of type 2 diabetes mellitus (T2DM) and Src homology 2 B adapter protein 1 (SH2B1) gene polymorphism in a diabetic population. Methods: A total of 111 T2DM patients (DM group) and 34 healthy controls (NC group) from Shanxi Provincial People's Hospital were included in this study. Exon 9 of the SH2B1 gene was detected using the Sanger sequencing method, and the relationship between SH2B1 gene polymorphism and diabetes was analyzed. Results: Comparison of the data between the two groups showed that the values of TG, the updated HOMA of insulin resistance (HOMA2-IR), weight, body mass index, waist circumference, fasting blood glucose and fasting insulin levels of the DM group were higher than those of the NC group (P < 0.05). The HOMA2 insulin sensitivity (%S) of the DM group was lower than that of the NC group (P < 0.05). Sequencing analysis revealed that the following five single nucleotide polymorphisms in exon 9 of SH2B1 may be related to T2DM: rs181578610, rs550079240, chr16.28884655, chr16.28884659 and chr16.28884831. Among them, chr16.28884655 was found to be significantly related to diabetes; this site, located on the NM_015503 exon, was related to TG, LDL-C and waist circumference. CONCLUSION: The SH2B1 gene locus chr16.28884655 was found to be significantly related to genetic susceptibility to T2DM.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Predisposición Genética a la Enfermedad , Resistencia a la Insulina/genética , Polimorfismo de Nucleótido Simple/genética , Índice de Masa Corporal , Glucemia/análisis , Glucemia/metabolismo , Insulina , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
PURPOSE: SH2B1 gene encodes an important adaptor protein to receptor tyrosine kinases or cytokine receptors associated with Janus kinases. This gene has been associated with the structural and functional modulation of neurons and other cells, and impacts on energy and glucose homeostasis. Several studies suggested that alterations in this gene are strong candidates for the development of obesity. However, only a few studies have screened SH2B1 point variants in individuals with obesity. Therefore, the aim of this study was to investigate the prevalence of SH2B1 variants in a Brazilian cohort of patients with severe obesity and candidates to bariatric surgery. METHODS: The cohort comprised 122 individuals with severe obesity, who developed this phenotype during childhood. As controls, 100 normal-weight individuals were included. The coding region of SH2B1 gene was screened by Sanger sequencing. RESULTS: A total of eight variants were identified in SH2B1, of which p.(Val345Met) and p.(Arg630Gln) variants were rare and predicted as potentially pathogenic by the in the silico algorithms used in this study. The p.(Val345Met) was not found in either the control group or in publicly available databases. This variant was identified in a female patient with severe obesity, metabolic syndrome and hyperglycemia. The p.(Arg630Gln) was also absent in our control group, but it was reported in gnomAD with an extremely low frequency. This variant was observed in a female patient with morbid obesity, metabolic syndrome, hypertension and severe binge-eating disorder. CONCLUSION: Our study reported for the first time two rare and potentially pathogenic variants in Brazilian patients with severe obesity. Further functional studies will be necessary to confirm and elucidate the impact of these variants on SH2B1 protein function and stability, and their impact on energetic metabolism. LEVEL OF EVIDENCE: Level V, cross-sectional descriptive study.
Asunto(s)
Síndrome Metabólico , Obesidad Mórbida , Humanos , Femenino , Obesidad Mórbida/genética , Brasil , Estudios Transversales , Proteínas Adaptadoras Transductoras de SeñalesRESUMEN
PURPOSE: Non-alcoholic fatty liver disease (NAFLD) is worldwide recognized as the most common cause of chronic liver disease. Current NAFLD clinical management relies on lifestyle change, nevertheless, the importance of the genetic make-up on liver damage and the possible interactions with diet are still poorly understood. The aim of the study was to evaluate the influence of the SH2B1 rs7359397 genetic variant on changes in body composition, metabolic status and liver health after 6-month energy-restricted treatment in overweight/obese subjects with NAFLD. In addition, gene-treatment interactions over the course of the intervention were examined. METHODS: The SH2B1 genetic variant was genotyped in 86 overweight/obese subjects with NAFLD from the FLiO study (Fatty Liver in Obesity study). Subjects were metabolically evaluated at baseline and at 6-months. Liver assessment included ultrasonography, Magnetic Resonance Imaging, elastography, a lipidomic test (OWL®-test) and specific blood liver biomarkers. Additionally, body composition, general biochemical markers and dietary intake were determined. RESULTS: Both genotypes significantly improved their body composition, general metabolic status and liver health after following an energy-restricted strategy. Liver imaging techniques showed a greater decrease in liver fat content (- 44.3%, p < 0.001) and in serum ferritin levels (p < 0.001) in the carriers of the T allele after the intervention. Moreover, lipidomic analysis, revealed a higher improvement in liver status when comparing risk vs. no-risk genotype (p = 0.006 vs. p = 0.926, respectively). Gene-treatment interactions showed an increase in fiber intake and omega-3 fatty acid in risk genotype (p interaction = 0.056 and p interaction = 0.053, respectively), while a significant increase in MedDiet score was observed in both genotype groups (p = 0.020). Moreover, no-risk genotype presented a relevant decrease in hepatic iron as well as in MUFA intake (p = 0.047 and p = 0.034, respectively). CONCLUSION: Subjects carrying the T allele of the rs7359397 polymorphism may benefit more in terms of hepatic health and liver status when prescribed an energy-restricted treatment, where a Mediterranean dietary pattern rich in fiber and other components such as omega-3 fatty acids might boost the benefits. TRIAL REGISTRATION: The Fatty Liver in Obesity was approved by the Research Ethics Committee of the University of Navarra and retrospectively registered (NCT03183193; www.clinicaltrials.gov ); June 2017.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Composición Corporal , Humanos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismoRESUMEN
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Currently, an increasing evidence showed that circular RNAs (circRNAs) play important roles in tumor progression. However, the effects and underlying mechanisms of circRNAs in CRC progression remain unclear. In the present study, through circRNA high-throughput sequencing and quantitative real-time polymerase chain reaction, we identified that hsa_circ_0136666 was significantly overexpressed in CRC tissues and cell lines. High hsa_circ_0136666 expression was associated with poor overall survival of patients with CRC. In vitro function assays showed that hsa_circ_0136666 inhibition suppressed CRC cell proliferation, migration, invasion, and arrested CRC cells in the G0/G1 phase. Furthermore, we showed that hsa_circ_0136666 inhibition reduced CRC cell growth in vivo. Mechanistically, we revealed that hsa_circ_0136666 could increase SH2B1 expression via competitively binding miR-136 in CRC cells. In addition, SH2B1 overexpression could reverse the effects of hsa_circ_0136666 inhibition on CRC cell progression. In conclusion, our data suggested that hsa_circ_0136666 could promote CRC cell progression via the miR-136/SH2B1 axis, elucidating a novel approach to improve the effectiveness of CRC treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/metabolismo , MicroARNs/metabolismo , ARN Circular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Puntos de Control del Ciclo Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , ARN Circular/genética , Transducción de Señal , Regulación hacia ArribaRESUMEN
Lung adenocarcinoma (LADC), the most prevalent type of human lung cancer, is characterized by many molecular abnormalities. SH2B1, a member of the SH2-domain containing family, have recently been shown to act as tumor activators in multiple cancers, including LADC. However, the mechanisms underlying SH2B1 overexpression are not completely understood. Here, we reported that SH2B1 expression levels were significantly upregulated and positively associated with EMT markers and poor patient survival in LADC specimens. Modulation of SH2B1 levels had distinct effects on cell proliferation, cell cycle, migration, invasion, and morphology in A549 and H1299 cells in vitro and in vivo. At the molecular level, overexpression of SH2B1 resulted in the upregulation of the EMT markers, especially induced ß-catenin accumulation and activated ß-catenin signaling to promote LADC cell proliferation and metastasis, while silencing SH2B1 had the opposite effect. Furthermore, ectopic expression of SH2B1 in H1299 cells increased IRS1 expression level. Reduced expression of IRS1 considerably inhibited H1299 cell proliferation, migration, and invasion which were driven by SH2B1 overexpression. Collectively, these results provide unequivocal evidence to establish that SH2B1-IRS1-ß-catenin axis is required for promoting EMT, and might prove to be a promising strategy for restraining tumor progression in LADC patients.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Non-small cell lung cancer (NSCLC), the most prevalent type of human lung cancer, is characterized by many molecular abnormalities. SH2B1, a member of the SH2-domain containing family, have recently been shown to act as tumor activators in multiple cancers. The objective of this study was to investigate the role SH2B1 and the underlying molecular mechanism in NSCLC. METHODS: Cell functional analysis and cell line-derived xenograft model were performed to determine SH2B1 potential roles on NSCLC cell proliferation in vitro and in vivo. In vitro assays were performed to identify signal molecular mechanisms. Subsequently, 104 patients with NSCLC undergoing primary surgical resection were recruited to evaluated expression of SH2B1 and Akt/mTOR signaling markers by immunohistochemical staining to determine their clinicopathologic significance. RESULTS: Modulation of SH2B1 expression levels had distinct effects on cell proliferation, cell cycle and apoptosis in the NSCLC cell lines A549 and H1299. At the molecular level, overexpression of SH2B1 resulted in the upregulation of the Akt/mTOR markers, p-Akt and p-mTOR, and downregulation of PTEN to promote NSCLC cell proliferation, while silencing SH2B1 had the opposite effect. In human NSCLC specimens, SH2B1 expression levels were positively associated with Akt/mTOR signaling pathway markers. CONCLUSIONS: The SH2B1/Akt/mTOR/PTEN axis is required for regulating NSCLC cell proliferation and might prove to be a promising strategy for restraining tumor progression in NSCLC patients.
RESUMEN
A 200â¼240 kb SH2B1-containing deletion region on 16p11.2 is associated with early-onset obesity and developmental delay. Here, we describe monozygotic twin brothers with discordant clinical presentations. Intrauterine fetal growth restriction was present in both twins. Additionally, twin A exhibited coarctation of aorta, left ventricular noncompaction, atrial septal defect, pericardial effusion, left hydronephrosis, and moderate developmental delay, whereas twin B exhibited single umbilical artery. Chromosome microarray analysis was performed on both twins and their parents. An identical 244 kb microdeletion on 16p11.2 including 9 Refseq genes, including SH2B1, was identified in the twins. The novel findings in monozygotic twins may expand the phenotypic spectrum of 16p11.2 microdeletion. Further studies are needed to strengthen the correlation between genotypes and abnormal clinical features.
Asunto(s)
Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Discapacidades del Desarrollo/genética , Enfermedades en Gemelos/genética , Anomalías Múltiples/fisiopatología , Coartación Aórtica/genética , Coartación Aórtica/fisiopatología , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/fisiopatología , Enfermedades en Gemelos/fisiopatología , Genotipo , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interatrial/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos , Recién Nacido , Masculino , Derrame Pericárdico/genética , Derrame Pericárdico/fisiopatología , Fenotipo , Gemelos MonocigóticosRESUMEN
BACKGROUND: Filopodia are actin-rich membrane protrusions that play instrumental roles in development, cell migration, pathogen detection, and wound healing. During neurogenesis, filopodium formation precedes the formation of dendrites and spines. The insulin receptor substrate protein of 53kDa (IRSp53) has been implicated in regulating the formation of filopodia. Our previous results suggest that a signaling adaptor protein SH2B1ß is required for neurite outgrowth of hippocampal neurons and neurite initiation of PC12 cells. Thus, we hypothesize that IRSp53 and SH2B1ß may act together to regulate filopodium formation. METHODS: To determine the contribution of IRSp53 and SH2B1ß in the formation of filopodia, we transiently transfect IRSp53 and/or SH2B1ß to 293T cells. Cell morphology and protein distribution are assessed via confocal microscopy and subcellular fractionation. Total numbers of filopodia and filopodium numbers per perimeter are calculated to show the relative contribution of IRSp53 and SH2B1ß. RESULTS: In this study, we show that SH2B1ß interacts with IRSp53 and increases the number of IRSp53-induced filopodia. One mechanism for this enhancement is that IRSp53 recruits SH2B1ß to the plasma membrane to actively promote membrane protrusion. The increased numbers of filopodia likely result from SH2B1-mediated cytoplasmic extension and thus increased cell perimeter as well as IRSp53-mediated filopodium formation. CONCLUSIONS: Taken together, this study provides a novel finding that SH2B1ß interacts with IRSp53-containing complexes to increase the number of filopodia. GENERAL SIGNIFICANCE: A better understanding of how SH2B1ß and IRSp53 promote filopodium formation may have clinical implication in neurogenesis and regeneration.
RESUMEN
Previous studies have shown that growth hormone (GH) recruits the adapter protein SH2B1ß to the GH-activated, GH receptor-associated tyrosine kinase JAK2, implicating SH2B1ß in GH-dependent actin cytoskeleton remodeling, and suggesting that phosphorylation at serines 161 and 165 in SH2B1ß releases SH2B1ß from the plasma membrane. Here, we examined the role of SH2B1ß in GH regulation of macrophage migration. We show that GH stimulates migration of cultured RAW264.7 macrophages, and primary cultures of peritoneal and bone marrow-derived macrophages. SH2B1ß overexpression enhances, whereas SH2B1 knockdown inhibits, GH-dependent motility of RAW macrophages. At least two independent mechanisms regulate the SH2B1ß-mediated changes in motility. In response to GH, tyrosines 439 and 494 in SH2B1ß are phosphorylated. Mutating these tyrosines in SH2B1ß decreases both basal and GH-stimulated macrophage migration. In addition, mutating the polybasic nuclear localization sequence (NLS) in SH2B1ß or creating the phosphomimetics SH2B1ß(S161E) or SH2B1ß(S165E), all of which release SH2B1ß from the plasma membrane, enhances macrophage motility. Conversely, SH2B1ß(S161/165A) exhibits increased localization at the plasma membrane and decreased macrophage migration. Mutating the NLS or the nearby serine residues does not alter GH-dependent phosphorylation on tyrosines 439 and 494 in SH2B1ß. Mutating tyrosines 439 and 494 does not affect localization of SH2B1ß at the plasma membrane or movement of SH2B1ß into focal adhesions. Taken together, these results suggest that SH2B1ß enhances GH-stimulated macrophage motility via mechanisms involving phosphorylation of SH2B1ß on tyrosines 439 and 494 and movement of SH2B1ß out of the plasma membrane (e.g. as a result of phosphorylation of serines 161 and 165).
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Hormona del Crecimiento/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Adhesiones Focales/metabolismo , Ratones , FosforilaciónRESUMEN
OBJECTIVE: Animal studies, genome-wide association and genomic structural variation studies have identified the SH2B1 gene as a candidate gene for obesity. Therefore, we have designed an extensive mutation and copy number variation (CNV) analysis investigating the prevalence of genetic and structural variations in SH2B1 in the Belgian population. DESIGN AND METHODS: In the first part of this study, we performed a mutation screen for variants in the SH2B1 coding region in 581 obese children and adolescents and 433 healthy, lean individuals with high-resolution melting curve analysis followed by direct sequencing. In the second part of this study, Multiplex Amplicon Quantification (MAQ) analysis was used to identify CNVs in the distal SH2B1-containing chr.16p11.2 region in 421 obese children and adolescents with no developmental delay or behavioral phenotype. RESULTS: Mutation analysis resulted in the identification of fifteen rare non-synonymous heterozygous variants. Several of these were found both in lean and obese subjects, suggesting that these are neutral polymorphisms. However, six private, heterozygous, non-synonymous variations were present in obese children only. Furthermore, we also identified six missense variants solely in lean individuals. CNV analysis could not identify carriers of the distal 16p11.2 deletion in our population. CONCLUSION: Our mutation analysis has demonstrated that variation in the SH2B1 gene is frequent in both lean and obese groups, with distinctive variations being present on either side of the weight spectrum. Although the equal variation frequency does not immediately support disease causality, it cannot be excluded that some variations are weight-increasing or -decreasing. Further functional testing of the variants will be necessary to fully understand the impact of these variants on SH2B1. We were not able to detect carriers of the distal 16p11.2 deletion in our study population. As we excluded patients with developmental or behavioral problems, we suggest that in addition to obesity, the distal deletion might predispose for these traits. Further characterization of the phenotype is therefore necessary to clearly identify the phenotype of the distal 16p11.2 microdeletion syndrome.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Variación Genética , Obesidad/genética , Proteínas Adaptadoras Transductoras de Señales/química , Adolescente , Adulto , Bélgica , Niño , Cromosomas Humanos Par 16 , Femenino , Humanos , Masculino , Sobrepeso/genéticaRESUMEN
INTRODUCTION: Monogenic obesity is caused by a unique genetic dysfunction, often appears in childhood, and can be accompanied by neuroendocrine, skeletal, developmental, and behavioral disorders, among other manifestations. Some variants in the SH2B1 gene have been suggested as strong candidates for the development of autosomal dominant obesity. CASE PRESENTATION: We describe here the clinical response after 1 year of setmelanotide treatment in a 22-year-old patient with an SH2B1 variant. After 3 months of treatment, our patient lost 5.4% of body weight. This period was followed by a 3-month period of noncompliance, in which the patient gained 4% body weight. After reinstating daily drug administration, the patient showed a 19.5% reduction in body weight and a clear improvement in all hunger scales after 1 year of treatment. CONCLUSION: These results indicate that the changes seen are drug dependent and provide positive evidence for the administration of setmelanotide in adult patients with heterozygous variants in the SH2B1 gene.
RESUMEN
BACKGROUND: Identifying a specific biomarker will facilitate the diagnosis and prediction of non-small cell lung cancer (NSCLC). The aim of this study was to investigate the serum SH2B1 in patients with NSCLC and healthy volunteers and establish a novel prediction model. METHODS: A total 103 NSCLC patients and 108 healthy volunteers were selected from December 2019 to December 2020. Their serum and important clinical data were collected. Serum SH2B1 concentration was determined by ELISA. A novel prediction model for NSCLC was established according to these significant factors. RESULTS: Multivariate logistic regression analysis indicated that the chronic pulmonary diseases; NLR ≥ 2.07; hemoglobin level ≥ 136.56 g/L; albumin level ≥ 42.59 g/L and serum SH2B1 concentration ≥615.28 pg/mL were considered as statistically significant difference (p < 0.05). A comprehensive nomogram was established based on serum SH2B1 concentration combined with significant clinical indicators to predict an individual's probability of NSCLC. CONCLUSION: The serum SH2B1 concentration ≥ 615.28 pg/mL is a significant predictive factor for NSCLC. Significantly, the prediction model based on serum SH2B1 has good stability and accuracy, which provides new insights of prediction assessment for NSCLC.
RESUMEN
SH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron-specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1-null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1-expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1âdorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic-onset or adult-onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN-projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN-projecting PVHSH2B1 neurons protects against diet-induced obesity. SH2B1 binds to TrkB and enhances brain-derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1âDRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Obesidad , Núcleo Hipotalámico Paraventricular , Animales , Obesidad/metabolismo , Obesidad/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Masculino , Femenino , Núcleo Hipotalámico Paraventricular/metabolismo , Modelos Animales de Enfermedad , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Núcleo Dorsal del Rafe/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neuronas/metabolismoRESUMEN
BACKGROUND/AIMS: The development of type 2 diabetes (T2D) is influenced both by environmental and by genetic determinants. Obesity is an important risk factor for T2D, mostly mediated by obesity-related insulin resistance. Obesity and insulin resistance are also modulated by the genetic milieu; thus, genes affecting risk of obesity and insulin resistance might also modulate risk of T2D. Recently, 32 loci have been associated with body mass index (BMI) by genome-wide studies, including one locus on chromosome 16p11 containing the SH2B1 gene. Animal studies have suggested that SH2B1 is a physiological enhancer of the insulin receptor and humans with rare deletions or mutations at SH2B1 are obese with a disproportionately high insulin resistance. Thus, the role of SH2B1 in both obesity and insulin resistance makes it a strong candidate for T2D. However, published data on the role of SH2B1 variability on the risk for T2D are conflicting, ranging from no effect at all to a robust association. METHODS: The SH2B1 tag SNP rs4788102 (SNP, single nucleotide polymorphism) was genotyped in 6978 individuals from six studies for abnormal glucose homeostasis (AGH), including impaired fasting glucose, impaired glucose tolerance or T2D, from the GENetics of Type 2 Diabetes in Italy and the United States (GENIUS T2D) consortium. Data from these studies were then meta-analyzed, in a Bayesian fashion, with those from DIAGRAM+ (n = 47,117) and four other published studies (n = 39,448). RESULTS: Variability at the SH2B1 obesity locus was not associated with AGH either in the GENIUS consortium (overall odds ratio (OR) = 0.96; 0.89-1.04) or in the meta-analysis (OR = 1.01; 0.98-1.05). CONCLUSION: Our data exclude a role for the SH2B1 obesity locus in the modulation of AGH.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Medicina Basada en la Evidencia , Sitios Genéticos , Trastornos del Metabolismo de la Glucosa/genética , Obesidad/genética , Polimorfismo de Nucleótido Simple , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Estudios de Asociación Genética , Trastornos del Metabolismo de la Glucosa/metabolismo , Humanos , Obesidad/metabolismo , Población BlancaRESUMEN
Protein structures calculated using NMR data are less accurate and less well-defined than they could be. Here we use the program ANSURR to show that this deficiency is at least in part due to a lack of hydrogen bond restraints. We describe a protocol to introduce hydrogen bond restraints into the structure calculation of the SH2 domain from SH2B1 in a systematic and transparent way and show that the structures generated are more accurate and better defined as a result. We also show that ANSURR can be used as a guide to know when the structure calculation is good enough to stop.
Asunto(s)
Dominios Homologos src , Conformación Proteica , Enlace de Hidrógeno , Modelos Moleculares , Espectroscopía de Resonancia MagnéticaRESUMEN
New approaches are needed to treat people whose obesity and type 2 diabetes (T2D) are driven by specific mechanisms. We investigate a deletion on chromosome 16p11.2 (breakpoint 2-3 [BP2-3]) encompassing SH2B1, a mediator of leptin and insulin signaling. Phenome-wide association scans in the UK (N = 502,399) and Estonian (N = 208,360) biobanks show that deletion carriers have increased body mass index (BMI; p = 1.3 × 10-10) and increased rates of T2D. Compared with BMI-matched controls, deletion carriers have an earlier onset of T2D, with poorer glycemic control despite higher medication usage. Cystatin C, a biomarker of kidney function, is significantly elevated in deletion carriers, suggesting increased risk of renal impairment. In a Mendelian randomization study, decreased SH2B1 expression increases T2D risk (p = 8.1 × 10-6). We conclude that people with 16p11.2 BP2-3 deletions have early, complex obesity and T2D and may benefit from therapies that enhance leptin and insulin signaling.
Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Enfermedades Metabólicas , Humanos , Leptina , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Proteínas Adaptadoras Transductoras de SeñalesRESUMEN
Colorectal cancer (CRC) is the third main cause of cancer-relevant deaths worldwide, and its incidence has increased in recent decades. Previous studies have indicated that certain long noncoding RNAs (lncRNAs) have regulatory roles in tumor occurrence and progression. Often, lncRNAs are competitive endogenous RNAs that sponge microRNAs to up-regulate mRNAs. Here, we examined the role of a novel lncRNA gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1) in CRC. We observed that BBOX1-AS1 is overexpressed in CRC cell lines, and BBOX1-AS1 knockdown enhances cell proliferation, migration and invasion while reducing cell apoptosis. miR-361-3p is present at a low level in CRC and is negatively modified by BBOX1-AS1. Moreover, miR-361-3p was validated to be targeted by BBOX1-AS1. Src homology 2 B adaptor protein 1 (SH2B1) was notably upregulated in CRC cell lines and was identified as a downstream gene of miR-361-3p. In addition, we found that miR-361-3p amplification can suppress the expression of SH2B1. Finally, data from rescue assays suggested that overexpression of SH2B1 counteracted BBOX1-AS1 silencing-mediated inhibition of CRC progression. In conclusion, BBOX1-AS1 promotes CRC progression by sponging hsa-miR-361-3p and up-regulating SH2B1.
Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , gamma-Butirobetaína DioxigenasaRESUMEN
The incidence of Parkinson's disease (PD) has increased tremendously, especially in the aged population and people with metabolic dysfunction; however, its underlying molecular mechanisms remain unclear. SH2B1, an intracellular adaptor protein, contributes to the signal transduction of several receptor tyrosine kinases and exerts beneficial metabolic effects for body weight regulation; however, whether SH2B1 plays a major role in pathological neurodegeneration in PD has not yet been investigated. This study aimed to investigate the effects of SH2B1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice with Sh2b1 deficiency or neuron-specific Sh2b1 overexpression. Cellular and molecular mechanisms were elucidated using human dopaminergic neuron SH-SY5Y cells analysed. We found that SH2B1 expression was confirmed to be downregulated in the blood samples of PD patients and in the brains of mice with MPTP-induced chronic PD. Sh2b1 deficiency caused marked exacerbation of behavioural defects and increased neuronal apoptosis in MPTP-treated mice, whereas restoration of neuron-specific Sh2b1 expression significantly reversed these effects. Similar results were observed in MPP + -treated SH-SY5Y cells. Mechanistically, upon binding to heat shock cognate 70 (HSC70), SH2B1 promotes HSC70-related recognition and PLIN4 lysosomal translocation and degradation, thus suppressing lipid peroxidation stress in the brains of PD mice. Adeno-associated virus-mediated rescue of neuronal HSC70 expression functionally alleviated the neuropathology of PD in wild-type but not in Sh2b1-deficient mice. This is the first study to examine the molecular underpinnings of SH2B1 against MPTP-induced neurodegeneration through cell autonomous promotion of neuronal survival in an in vivo PD model. Our findings reveal that SH2B1 antagonizes neurodegenerative pathology in PD via the SH2B1-HSC70-PLIN4 axis.