Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31253574

RESUMEN

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Asunto(s)
Proteína BRCA1/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Enzimas Desubicuitinizantes/genética , Chaperonas de Histonas/genética , Neoplasias/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Núcleo Celular/genética , Núcleo Celular/inmunología , Citoplasma/genética , Citoplasma/inmunología , Roturas del ADN de Doble Cadena , Reparación del ADN/inmunología , Enzimas Desubicuitinizantes/inmunología , Células HeLa , Humanos , Inmunidad Celular/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Neoplasias/inmunología , Proteínas Asociadas a Matriz Nuclear/genética , Unión Proteica/genética , Ubiquitina/genética , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/genética
2.
Mol Cell ; 69(4): 610-621.e5, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452640

RESUMEN

Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Glicina Hidroximetiltransferasa/metabolismo , Mitocondrias/genética , Iniciación de la Cadena Peptídica Traduccional , ARN de Transferencia de Metionina/química , Serina/química , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Sistemas CRISPR-Cas , Proliferación Celular , Citosol/metabolismo , Femenino , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Serina/genética , Serina/metabolismo , Tetrahidrofolatos/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865203

RESUMEN

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Asunto(s)
Glicina Hidroximetiltransferasa , Síndrome MELAS , Serina , Humanos , Síndrome MELAS/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/patología , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Serina/metabolismo , Mioblastos/metabolismo , NAD/metabolismo , Masculino , Proteómica/métodos , Femenino , Transcriptoma , Multiómica
4.
Exp Cell Res ; 441(1): 114150, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971519

RESUMEN

Despite significant advances in the treatment of colorectal cancer (CRC), identification of novel targets and treatment options are imperative for improving its prognosis and survival rates. The mitochondrial SIRT3 and SHMT2 have key roles in metabolic reprogramming and cell proliferation. This study investigated the potential use of the natural product apigenin in CRC treatment employing both in vivo and in vitro models and explored the role of SIRT3 and SHMT2 in apigenin-induced CRC apoptosis. The role of SHMT2 in CRC patients' survival was verified using TCGA database. In vivo, apigenin treatment restored the normal colon appearance. On the molecular level, apigenin augmented the immunohistochemical expression of cleaved caspase-3 and attenuated SIRT3 and SHMT2 mRNA expression CRC patients with decreased SHMT2 expression had improved overall and disease-free survival rates. In vitro, apigenin reduced the cell viability in a time-dependent manner, induced G0/G1 cell cycle arrest, and increased the apoptotic cell population compared to the untreated control. Mechanistically, apigenin treatment mitigated the expression of SHMT2, SIRT3, and its upstream long intergenic noncoding RNA LINC01234 in CRC cells. Conclusively, apigenin induces caspase-3-dependent apoptosis in CRC through modulation of SIRT3-triggered mitochondrial pathway suggesting it as a promising therapeutic agent to improve patient outcomes.


Asunto(s)
Apigenina , Apoptosis , Proliferación Celular , Neoplasias Colorrectales , Sirtuina 3 , Apigenina/farmacología , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Sirtuina 3/metabolismo , Sirtuina 3/genética , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Glicina Hidroximetiltransferasa
5.
J Biol Chem ; 299(7): 104909, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307917

RESUMEN

Sustainable TGF-ß1 signaling drives organ fibrogenesis. However, the cellular adaptation to maintain TGF-ß1 signaling remains unclear. In this study, we revealed that dietary folate restriction promoted the resolution of liver fibrosis in mice with nonalcoholic steatohepatitis. In activated hepatic stellate cells, folate shifted toward mitochondrial metabolism to sustain TGF-ß1 signaling. Mechanistically, nontargeted metabolomics screening identified that α-linolenic acid (ALA) is exhausted by mitochondrial folate metabolism in activated hepatic stellate cells. Knocking down serine hydroxymethyltransferase 2 increases the bioconversion of ALA to docosahexaenoic acid, which inhibits TGF-ß1 signaling. Finally, blocking mitochondrial folate metabolism promoted liver fibrosis resolution in nonalcoholic steatohepatitis mice. In conclusion, mitochondrial folate metabolism/ALA exhaustion/TGF-ßR1 reproduction is a feedforward signaling to sustain profibrotic TGF-ß1 signaling, and targeting mitochondrial folate metabolism is a promising strategy to enforce liver fibrosis resolution.


Asunto(s)
Ácido Fólico , Cirrosis Hepática , Mitocondrias , Ácido alfa-Linolénico , Animales , Ratones , Ácido alfa-Linolénico/deficiencia , Ácido alfa-Linolénico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hígado/citología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ácido Fólico/metabolismo , Mitocondrias/metabolismo , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/metabolismo , Transducción de Señal , Retroalimentación Fisiológica
6.
Mol Cell Biochem ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175377

RESUMEN

Esophageal cancer (EC) is a familiar digestive tract tumor with highly lethal. The hypoxic environment has been demonstrated to be a significant factor in modulating malignant tumor progression and is strongly associated with the abnormal energy metabolism of tumor cells. Serine hydroxymethyl transferase 2 (SHMT2) is one of the most frequently expressed metabolic enzymes in human malignancies. The study was designed to investigate the biological functions and regulation mechanisms of SHMT2 in EC under hypoxia. We conducted RT-qPCR to assess SHMT2 levels in EC tissues and cells (TE-1 and EC109). EC cells were incubated under normoxia and hypoxia, respectively, and altered SHMT2 expression was evaluated through RT-qPCR, western blot, and immunofluorescence. The biological functions of SHMT2 on EC cells were monitored by performing CCK-8, EdU, transwell, sphere formation, glucose uptake, and lactate production assays. The SHMT2 protein lactylation was measured by immunoprecipitation and western blot. In addition, SHMT2-interacting proteins were analyzed by bioinformatics and validated by rescue experiments. SHMT2 was notably upregulated in EC tissues and cells. Hypoxia elevated SHMT2 protein expression, augmenting EC cell proliferation, migration, invasion, stemness, and glycolysis. In addition, hypoxia triggered lactylation of the SHMT2 protein and enhanced its stability. SHMT2 knockdown impeded the malignant phenotype of EC cells. Further mechanistic studies disclosed that SHMT2 is involved in EC progression by interacting with MTHFD1L. Hypoxia-induced SHMT2 protein lactylation and upregulated its protein level, which in turn enhanced MTHFD1L expression and accelerated the malignant progression of EC cells.

7.
Endocr Regul ; 58(1): 144-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861539

RESUMEN

Objective. Serine hydroxymethyltransferase (SHMT2) plays a multifunctional role in mitochondria (folate-dependent tRNA methylation, translation, and thymidylate synthesis). The endoplasmic reticulum stress, hypoxia, and glucose and glutamine supply are significant factors of malignant tumor growth including glioblastoma. Previous studies have shown that the knockdown of the endoplasmic reticulum to nucleus signaling 1 (ERN1) pathway of endoplasmic reticulum stress strongly suppressed glioblastoma cell proliferation and modified the sensitivity of these cells to hypoxia and glucose or glutamine deprivations. The present study aimed to investigate the regulation of the SHMT2 gene in U87MG glioblastoma cells by ERN1 knockdown, hypoxia, and glucose or glutamine deprivations with the intent to reveal the role of ERN1 signaling in sensitivity of this gene expression to hypoxia and nutrient supply. Methods. The control U87MG glioblastoma cells (transfected by an empty vector) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (500 ng/ml for 4 h). For glucose and glutamine deprivations, cells were exposed in DMEM without glucose and glutamine, respectively for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of the SHMT2 gene was studied by real-time qPCR and normalized to ACTB. Results. It was found that inhibition of ERN1 endoribonuclease and protein kinase in glioblastoma cells led to a down-regulation of SHMT2 gene expression in U87MG cells. At the same time, the expression of this gene did not significantly change in cells with inhibited ERN1 endoribonuclease, but tunicamycin strongly increased its expression. Moreover, the expression of the SHMT2 gene was not affected in U87MG cells after silencing of XBP1. Hypoxia up-regulated the expression level of the SHMT2 gene in both control and ERN1 knockdown U87MG cells. The expression of this gene was significantly up-regulated in glioblastoma cells under glucose and glutamine deprivations and ERN1 knockdown significantly increased the sensitivity of the SHMT2 gene to these nutrient deprivation conditions. Conclusion. The results of the present study demonstrate that the expression of the SHMT2 gene responsible for serine metabolism and formation of folate one-carbon is controlled by ERN1 protein kinase and induced by hypoxia as well as glutamine and glucose deprivation conditions in glioblastoma cells and reflects the ERN1-mediated reprogramming of sensitivity this gene expression to nutrient deprivation.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glicina Hidroximetiltransferasa , Humanos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Estrés del Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula/fisiología , Hipoxia de la Célula/genética , Glutamina/metabolismo , Técnicas de Silenciamiento del Gen
8.
Biochem Biophys Res Commun ; 671: 160-165, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37302290

RESUMEN

One-carbon metabolism is essential for our human cells to carry out nucleotide synthesis, methylation, and reductive metabolism through one-carbon units, and these pathways ensure the high proliferation rate of cancer cells. Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme in one-carbon metabolism. This enzyme can convert serine into a one-carbon unit bound to tetrahydrofolate and glycine, ultimately supporting the synthesis of thymidine and purines and promoting the growth of cancer cells. Due to SHMT2's crucial role in the one-carbon cycle, it is ubiquitous in human cells and even in all organisms and highly conserved. Here, we summarize the impact of SHMT2 on the progression of various cancers to highlight its potential use in the development of cancer treatments.


Asunto(s)
Glicina Hidroximetiltransferasa , Procesamiento Proteico-Postraduccional , Humanos , Proliferación Celular , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Serina/metabolismo
9.
Exp Cell Res ; 415(2): 113138, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398308

RESUMEN

Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme that regulates serine/glycine transition; however, its specific function and molecular mechanisms in tumors remain controversial. In this study, we aimed to enhance the understanding in this regard. Through in vitro and in vivo experiments, as well as data analyses using public databases, we investigated the effect of SHMT2 in prostate cancer. Our results indicated that SHMT2 acts as a prostate cancer tumor proliferation suppressor and negatively regulates the aggressive behavior of prostate cancer through activation of epithelial-mesenchymal transition. Additionally, downregulated SHMT2 expression was observed in more advanced prostate cancer phenotypes, and further analysis showed that its depletion promoted proliferation and migration in prostate cancer cell lines. Taken together, our results revealed the function of SHMT2 in prostate cancer and may potentially play a role in the exploration of new therapeutic strategies.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética
10.
Genomics ; 114(4): 110424, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798250

RESUMEN

OBJECTIVE: Serine hydroxymethyltransferase 2 (SHMT2) is the first rate-limiting enzyme for serine/glycine biosynthesis and one carbon metabolism. Here, we explore the underlying mechanism of how SHMT2 functions in renal cell carcinoma (RCC) initiation. METHODS: In this study, SHMT2 expression was assessed in RCC tissues. In vitro experiments were performed to investigate the functional role of SHMT2. The detailed mechanisms of SHMT2-mediated PPAT were addressed. RESULTS: Increased SHMT2 facilitated RCC cell proliferation by inducing the G1/S phase transition. And SHMT2 promoted the expression of PPAT. Mechanism dissection revealed that SHMT2 enhanced the m6A modification through the endogenous methyl donor SAM mediated by SHMT2 via serine/glycine one carbon metabolic networks. SHMT2-catalyzed serine/glycine conversion regulated PPAT expression in an m6A-IGF2BP2-dependent manner. SHMT2 promoted RCC cell proliferation by upregulating PPAT expression. CONCLUSIONS: SHMT2 promotes RCC tumorigenesis by increasing PPAT expression. Thus, SHMT2 may be a novel potential therapeutic target for RCC.


Asunto(s)
Amidofosforribosiltransferasa , Carcinoma de Células Renales , Glicina Hidroximetiltransferasa , Neoplasias Renales , Amidofosforribosiltransferasa/metabolismo , Carbono/metabolismo , Carcinogénesis/genética , Carcinoma de Células Renales/genética , Proliferación Celular , Transformación Celular Neoplásica , Glicina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Neoplasias Renales/genética , Proteínas de Unión al ARN/metabolismo , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA