Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34861191

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias Pancreáticas/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Linfocitos T CD8-positivos/citología , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Inhibidoras de la Diferenciación/inmunología , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Proteínas de Neoplasias/inmunología , Factores de Transcripción SOXC/inmunología
2.
Lab Invest ; 104(5): 102042, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431117

RESUMEN

Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Metástasis Linfática , Factores de Transcripción SOXC , Humanos , Masculino , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Femenino , Persona de Mediana Edad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/secundario , Carcinoma de Células Escamosas de Esófago/cirugía , Anciano , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Ganglios Linfáticos/patología , Ganglios Linfáticos/metabolismo , Adulto , Pronóstico
3.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38447391

RESUMEN

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Asunto(s)
Células de la Granulosa , Vía de Señalización Hippo , Femenino , Animales , Humanos , Línea Celular Tumoral , Células de la Granulosa/metabolismo , Proliferación Celular , Apoptosis , Mamíferos/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Co-Represoras/metabolismo
4.
J Transl Med ; 22(1): 9, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169402

RESUMEN

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Asunto(s)
Nefropatías Diabéticas , Ferroptosis , Cálculos Renales , Humanos , Ratones , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Oxalato de Calcio , Histonas/metabolismo , Epigénesis Genética , Riñón/patología , Nefropatías Diabéticas/metabolismo , Cálculos Renales/patología , ARN/metabolismo , Factores de Transcripción SOXC/metabolismo , Sistema de Transporte de Aminoácidos y+
5.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943117

RESUMEN

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pancreáticas , Proteómica , Factores de Transcripción SOXC , Proteínas Activadoras de ras GTPasa , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Transducción de Señal , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética
6.
Electrophoresis ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629299

RESUMEN

Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.

7.
FASEB J ; 37(10): e23204, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37738042

RESUMEN

Placental insufficiency disorders, including preeclampsia and intrauterine growth restriction, are major obstetric complications that can have devastating effects on both the mother and the fetus. These syndromes have underlying poor placental trophoblast cell invasion into uterine tissues. Placental invasion is controlled by many hormones and growth factors. Myostatin (MSTN) is a transforming growth factor-ß superfamily member recognized for its important role in muscle growth control. MSTN has also been shown to be secreted and functioning in the placenta, and its serum and/or placental levels were found to be upregulated in preeclampsia and intrauterine growth restriction. Considering that the mechanistic role of MSTN in placentation remains poorly understood, we hypothesized that MSTN uses ALK4/5-SMAD2/3/4 signaling to increase human trophoblast invasion through a group of epithelial-mesenchymal transition genes including SERPINE2, PAI-1, and SOX4. mRNA sequencing of control and MSTN-treated primary human trophoblast cells (n = 5) yielded a total of 610 differentially expressed genes (false discovery rate <0.05) of which 380 genes were upregulated and 230 were downregulated. These differentially expressed genes were highly enriched in epithelial-mesenchymal transition genes, and a subset including SERPINE2, PAI-1, and SOX4 was investigated for its role in MSTN-induced trophoblast cell invasion. We found that MSTN induced upregulation of SERPINE2 via ALK4/5-SMAD2/3/4 signaling; however, SMAD2 was not involved in MSTN-induced PAI-1 upregulation. SOX4 was involved in MSTN-induced upregulation of SERPINE2, but not PAI-1. Collectively, this study discovers novel molecular mechanisms of MSTN-induced human trophoblast cell invasion and provides insight into the functional consequences of its dysregulation in placental insufficiency disorders.


Asunto(s)
Miostatina , Insuficiencia Placentaria , Preeclampsia , Femenino , Humanos , Embarazo , Transición Epitelial-Mesenquimal , Retardo del Crecimiento Fetal , Péptidos y Proteínas de Señalización Intercelular , Miostatina/genética , Placenta , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidores de Serina Proteinasa , Serpina E2/genética , Factores de Transcripción SOXC , Trofoblastos
8.
Mol Biol Rep ; 51(1): 116, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227121

RESUMEN

BACKGROUND: SOX4 is a transcription factor belonging to the SOX (Sry-related High Mobility Group [HMG] box) family and plays a pivotal role in various biological processes at various stages of life. SOX4 is also expressed in the skin in adults and has been reported to be involved in wound healing, tumor formation, and metastasis. METHODS AND RESULTS: In this study, we investigated the role of SOX4 in keratinocyte phenotypic changes. We generated a SOX4-overexpressing keratinocyte cell line that expresses SOX4 in a doxycycline (DOX)-inducible manner. DOX treatment induced a change from a paving stone-like morphology to a spindle-like morphology under microscopic observation. Comprehensive gene analysis by RNA sequencing revealed increased expression of genes related to anatomical morphogenesis and cell differentiation as well as decreased expression of genes related to epithelial formation and keratinization, suggesting that SOX4 induced EMT-like phenotype in keratinocytes. Differentially expressed genes (DEGs) obtained by RNA-seq were confirmed using qRT-PCR. DOX-treated TY-1 SOX4 showed a decrease in the epithelial markers (KRT15, KRT13, KRT5, and CLDN1) and an increase in the mesenchymal marker FN1. Protein expression changes by Western blotting also showed a decrease in the epithelial marker proteins keratin 15, keratin 13, and claudin 1, and an increase in the mesenchymal marker fibronectin. Removal of DOX from DOX-treated cells also restored the epithelial and mesenchymal markers altered by SOX4. CONCLUSION: Our results indicate that SOX4 reversibly induces an EMT-like phenotype in human keratinocytes via suppression of epithelial marker genes.


Asunto(s)
Queratinocitos , Factores de Transcripción SOXC , Piel , Humanos , Western Blotting , Doxiciclina , Expresión Génica , Fenotipo , Factores de Transcripción SOXC/genética
9.
J Biochem Mol Toxicol ; 38(4): e23703, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605439

RESUMEN

Acute renal failure (ARF) is a huge threat to the lives of most patients in intensive care units, and there is currently no satisfactory treatment strategy. SRY-box transcription factor 4 (SOX4) plays a key role in the development of various diseases, but its effect on ARF is unknown. Therefore, this study aimed to explore the relationship between SOX4 and ARF. Blood samples were collected from 20 ARF patients and 20 healthy volunteers. We also established an ARF rat model by excising the right kidney and ligating the left renal artery, and SOX4 knockdown in ARF rats was achieved down by means of lentiviral infection. Subsequently, we used quantitative polymerase chain reaction and western bolt assays to detect the expression levels of SOX4 and nuclear factor-κB (NF-κB) signaling pathway-related proteins in human blood or rat renal tissue and hematoxylin and eosin and terminal deoxynucleotidyl transferase (TdT) 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling staining to observe the pathological changes and apoptosis of renal tissue. Enzyme-linked immunosorbent assay and biochemical kits were used to measure the levels of renal function-related indicators (blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin) and inflammatory factors (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-alpha), as well as changes in oxidative stress-related indicators (malondialdehyde [MDA], superoxide dismutase [SOD], and reactive oxygen species [ROS]) in rat serum. SOX4 expression levels in blood samples from ARF patients and renal tissue from ARF rats were significantly higher compared with those in healthy volunteers and control rats, respectively. ARF model rats displayed the typical ARF phenotype, while SOX4 silencing significantly improved pathological injury and apoptosis of renal tissue in ARF rats. Moreover, SOX4 silencing significantly inhibited increased levels of renal function-related indicators and inflammatory factors and reduced the level of excessive oxidative stress (MDA and ROS were upregulated, and SOD was downregulated) in ARF rats. SOX4 also reduced the activity of the NF-κB signaling pathway in ARF samples. Thus, SOX4 knockdown may reduce oxidative stress, the inflammatory response, and apoptosis by reducing the activity of the NF-κB signaling pathway, thereby improving renal injury in ARF rats.


Asunto(s)
Lesión Renal Aguda , Apoptosis , FN-kappa B , Estrés Oxidativo , Factores de Transcripción SOXC , Transducción de Señal , Animales , Humanos , Ratas , Lesión Renal Aguda/metabolismo , Riñón , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Superóxido Dismutasa/metabolismo
10.
Clin Oral Investig ; 28(5): 287, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684576

RESUMEN

OBJECTIVES: Coffin-Siris Syndrome (CSS) is a congenital disorder characterized by delayed growth, dysmorphic facial features, hypoplastic nails and phalanges of the fifth digit, and dental abnormalities. Tooth agenesis has been reported in CSS patients, but the mechanisms regulating this syndromic tooth agenesis remain largely unknown. This study aims to identify the pathogenic mutation of CSS presenting tooth genesis and explore potential regulatory mechanisms. MATERIALS AND METHODS: We utilized whole-exome sequencing to identify variants in a CSS patient, followed by Sanger validation. In silico analysis including conservation analysis, pathogenicity predictions, and 3D structural assessments were carried out. Additionally, single-cell RNA sequencing and fluorescence in situ hybridization (FISH) were applied to explore the spatio-temporal expression of Sox4 expression during murine tooth development. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to examine the functional role of SOX4. RESULTS: A novel de novo SOX4 missense mutation (c.1255C > G, p.Leu419Val) was identified in a Chinese CSS patient exhibiting tooth agenesis. Single-cell RNA sequencing and FISH further verified high expression of Sox4 during murine tooth development, and WGCNA confirmed its central role in tooth development pathways. Enriched functions included cell-substrate junctions, focal adhesion, and RNA splicing. CONCLUSIONS: Our findings link a novel SOX4 mutation to syndromic tooth agenesis in CSS. This is the first report of SOX4 missense mutation causing syndromic tooth agenesis. CLINICAL RELEVANCE: This study not only enhances our understanding of the pathogenic mutation for syndromic tooth agenesis but also provides genetic diagnosis and potential therapeutic insights for syndromic tooth agenesis.


Asunto(s)
Anodoncia , Secuenciación del Exoma , Cara , Discapacidad Intelectual , Micrognatismo , Mutación Missense , Cuello , Factores de Transcripción SOXC , Animales , Femenino , Humanos , Masculino , Ratones , Anomalías Múltiples/genética , Anodoncia/genética , Cara/anomalías , Deformidades Congénitas de la Mano/genética , Hibridación Fluorescente in Situ , Micrognatismo/genética , Cuello/anomalías , Factores de Transcripción SOXC/genética
11.
Funct Integr Genomics ; 23(1): 75, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867268

RESUMEN

Lung adenocarcinoma (LUAD) represents the subtype of non-small-cell lung cancer (NSCLC), with the high morbidity over the world. Mounting studies have highlighted the important roles of circular RNAs (circRNA) in cancers, including LUAD. This study mainly focused on revealing the role of circGRAMD1B and its relevant regulatory mechanism in LUAD cells. RT-qPCR and Western blot were conducted to detect the expression of target genes. Function assays were performed to determine the effect of related genes on migration, invasion, and epithelial-mesenchymal transition (EMT) of LUAD cells. Mechanism analyses were conducted to figure out the specific mechanism with regard to circGRAMD1B and its downstream molecules as well. Based on the experimental results, circGRAMD1B was upregulated in LUAD cells and promoted the migration, invasion, and EMT of LUAD cells. Mechanically, circGRAMD1B sponged miR-4428 to upregulate the expression of SOX4. In addition, SOX4 activated the expression of MEX3A at the transcriptional level, thereby modulating PI3K/AKT pathway to facilitate LUAD cell malignant behaviors. In conclusion, circGRAMD1B is discovered to modulate miR-4428/SOX4/MEX3A axis to further activate PI3K/AKT pathway, finally boosting migration, invasion, and EMT of LUAD cells.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Transición Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción SOXC , Fosfoproteínas , Proteínas de Unión al ARN
12.
Mol Carcinog ; 62(9): 1399-1416, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294072

RESUMEN

Interleukin-17 (IL-17), a potent proinflammatory cytokine, can trigger the metastasis of non-small cell lung cancer (NSCLC). However, the underlying mechanism involved in IL-17-induced NSCLC cell metastasis remains unclear. In this study, we found that not only the expression of IL-17, IL-17RA, and/or general control nonrepressed protein 5 (GCN5), SRY-related HMG-BOX gene 4 (SOX4), and matrix metalloproteinase 9 (MMP9) was increased in the NSCLC tissues and in the IL-17-stimulated NSCLC cells, but also IL-17 treatment could enhance NSCLC cell migration and invasion. Further mechanism exploration revealed that IL-17-upregulated GCN5 and SOX4 could bind to the same region (-915 to -712 nt) of downstream MMP9 gene promoter driving its gene transcription. In the process, GCN5 could mediate SOX4 acetylation at lysine 118 (K118, a newly identified site) boosting MMP9 gene expression as well as cell migration and invasion. Moreover, the SOX4 acetylation or MMP9 induction and metastatic nodule number in the lung tissues of the BALB/c nude mice inoculated with the NSCLC cells stably infected by corresponding LV-shGCN5 or LV-shSOX4, LV-shMMP9 plus IL-17 incubation were markedly reduced. Overall, our findings implicate that NSCLC metastasis is closely associated with IL-17-GCN5-SOX4-MMP9 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Acetilación , Ratones Desnudos , Movimiento Celular/genética , Transcripción Genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética
13.
Histochem Cell Biol ; 159(5): 439-451, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36602585

RESUMEN

Cervical cancer (CC) is the primary cancer-related cause of morbidity and mortality in women. Previous studies have shown that placenta-specific 8 (PLAC8) has different functions in multiple malignancies. This study aimed to explore the function and regulatory mechanism of PLAC8 in CC. Bioinformatics and immunohistochemical analyses demonstrated that PLAC8 was significantly upregulated in CC tissues compared with normal tissues. Gain/loss-of-function experiments showed that siRNA-mediated knockdown of PLAC8 suppressed cell migration and invasion, while PLAC8 overexpression promoted cell motility. Moreover, PLAC8 was revealed to affect the epithelial-mesenchymal transition (EMT) process by upregulating epithelial (E)-cadherin and decreasing the expression of mesenchymal markers of EMT, including vimentin, zinc finger E-box binding homeobox 1 (ZEB1), neural (N)-cadherin, matrix metalloproteinase-9 (MMP-9), and MMP-2 in PLAC8-silenced cells. PLAC8 activated the AKT pathway, as proven by the downregulation of p-AKTSer473 and p-AKTThr308 expression after PLAC8 knockdown. Furthermore, PLAC8 overexpression upregulated the expression of sex-determining region Y-related high-mobility group box transcription factor 4 (SOX4), which is reported to mediate the activation of the AKT pathway, and SOX4 deficiency reversed the cellular functions caused by PLAC8 overexpression. Overall, the present study indicates that PLAC8 may facilitate CC development by activating the SOX4-mediated AKT pathway, suggesting that PLAC8 may serve as a potential biomarker for CC treatment.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias del Cuello Uterino , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Proteínas/metabolismo
14.
Oral Dis ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249063

RESUMEN

OBJECTIVES: To reveal the effect and mechanism of methyltransferase-like 3 (METTL3) on cancer stem cells (CSCs) of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: First, we analyzed 14-HNSCC-patients' scRNA-seq dataset and TCGA dataset of HNSCC. Then, Mettl3 knockout or overexpression mice models were studied via tracing and staining technologies. In addition, we took flow cytometry sorting and sphere formation assays to observe tumorigenicity and used cell transfection and western blotting to verify target protein expression levels. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative real-time PCR (MeRIP-qPCR) were taken to identify the mechanism of Mettl3 regulating Bmi1+ CSCs in HNSCC. RESULTS: Due to SOX4 transcriptional regulation, METTL3 regulated the malignant behavior of BMI1+ HNSCC stem cells through cell division pathway. The progression and malignancy of HNSCC were decreased after Mettl3 knocked-out, while increased after Mettl3 knocked-in in Bmi1+ CSCs in vivo. Knockdown of Mettl3 inhibited stemness properties of CSCs in vitro. Mechanically, Mettl3 mediated the m6 A modification of ALDH1A3 and ALDH7A1 mRNA in Bmi1+ HNSCC CSCs. CONCLUSION: Regulated by SOX4, METTL3-mediated ALDH m6 A methylation regulates the malignant behavior of BMI1+ HNSCC CSCs through cell division pathway.

15.
Proc Natl Acad Sci U S A ; 117(11): 5782-5790, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123087

RESUMEN

Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioblastoma/metabolismo , ARN de Transferencia/metabolismo , Factores de Transcripción SOXC/metabolismo , Línea Celular Tumoral , ADN Polimerasa III/metabolismo , Células HEK293 , Humanos , ARN de Transferencia/genética , Factores de Transcripción SOXC/genética , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834931

RESUMEN

SOX4 is a transcription factor with pleiotropic functions required for different developmental processes, such as corticogenesis. As with all SOX proteins, it contains a conserved high mobility group (HMG) and exerts its function via interaction with other transcription factors, such as POU3F2. Recently, pathogenic SOX4 variants have been identified in several patients who had clinical features overlapping with Coffin-Siris syndrome. In this study, we identified three novel variants in unrelated patients with intellectual disability, two of which were de novo (c.79G>T, p.Glu27*; c.182G>A p.Arg61Gln) and one inherited (c.355C>T, p.His119Tyr). All three variants affected the HMG box and were suspected to influence SOX4 function. We investigated the effects of these variants on transcriptional activation by co-expressing either wildtype (wt) or mutant SOX4 with its co-activator POU3F2 and measuring their activity in reporter assays. All variants abolished SOX4 activity. While our experiments provide further support for the pathogenicity of SOX4 loss-of-function (LOF) variants as a cause of syndromic intellectual disability (ID), our results also indicate incomplete penetrance associated with one variant. These findings will improve classification of novel, putatively pathogenic SOX4 variants.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Factores de Transcripción SOXC , Humanos , Regulación de la Expresión Génica , Discapacidad Intelectual/genética , Micrognatismo/genética , Factores de Transcripción SOXC/genética , Factores de Transcripción/metabolismo
17.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835620

RESUMEN

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common disorders that disrupt the quality of life of millions of people. These two chronic diseases cause damage to the joint cartilage and surrounding tissues of more than 220 million people worldwide. Sex-determining region Y-related (SRY) high-mobility group (HMG) box C, SOXC, is a superfamily of transcription factors that have been recently shown to be involved in various physiological and pathological processes. These include embryonic development, cell differentiation, fate determination, and autoimmune diseases, as well as carcinogenesis and tumor progression. The SOXC superfamily includes SOX4, SOX11, and SOX12, all have a similar DNA-binding domain, i.e., HMG. Herein, we summarize the current knowledge about the role of SOXC transcription factors during arthritis progression and their potential utilization as diagnostic biomarkers and therapeutic targets. The involved mechanistic processes and signaling molecules are discussed. SOX12 appears to have no role in arthritis, however SOX11 is dysregulated and promotes arthritic progression according to some studies but supports joint maintenance and protects cartilage and bone cells according to others. On the other hand, SOX4 upregulation during OA and RA was documented in almost all studies including preclinical and clinical models. Molecular details have indicated that SOX4 can autoregulate its own expression besides regulating the expression of SOX11, a characteristic associated with the transcription factors that protects their abundance and activity. From analyzing the currently available data, SOX4 seems to be a potential diagnostic biomarker and therapeutic target of arthritis.


Asunto(s)
Artritis Reumatoide , Cartílago Articular , Osteoartritis , Humanos , Factores de Transcripción SOXC/metabolismo , Calidad de Vida , Factores de Transcripción/metabolismo , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Biomarcadores
18.
Cytokine ; 152: 155805, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202986

RESUMEN

OBJECTIVE: To clarify the expression and underlying network of long non-coding RNA (lncRNA) MCM3AP-AS1 in osteoarthritis (OA). METHODS: Human articular cartilage samples, OA model rats and IL-1ß-treated C28/I2 cells were used in this study. The expression changes of genes and proteins were assessed by real-time quantitative PCR (qRT-PCR) and western blot. Cell viability, apoptosis, autophagy and extracellular matrix (ECM) degradation were assessed by Cell Counting Kit-8 (CCK-8), immunohistochemistry (IHC), flow cytometry, immunofluorescence and western blot assays, respectively. Molecule interactions were validated by dual luciferase and Chromatin immunoprecipitation (ChIP) assays. H&E staining was used to detect the pathological changes of cartilage. RESULTS: MCM3AP-AS1 was upregulated in OA patients and IL-1ß-induced chondrocytes. Knockdown of MCM3AP-AS1 enhanced autophagy, while alleviated ECM degradation and cartilage injury. Mechanistically, overexpression of SOX4 boosted the transcription of MCM3AP-AS1. Moreover, MCM3AP-AS1 functioned as a molecular sponge or epigenetic regulator of miR-149-5p to facilitate Notch1 expression. Functional rescue experiments showed that either inhibition of miR-149-5p nor ectopic expression of Notch1 dramatically weakened the biological impacts of MCM3AP-AS1 silencing. CONCLUSION: These finding demonstrated that SOX4-activated MCM3AP-AS1 aggravated OA progression by modulating autophagy and ECM degradation via targeting miR-149-5p/Notch1 axis. These data supported that inhibition of MCM3AP-AS1 might be a potential treatment strategy of OA.


Asunto(s)
MicroARNs , Osteoartritis , ARN Largo no Codificante , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Apoptosis/fisiología , Proliferación Celular , Condrocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXC/metabolismo , Transducción de Señal
19.
J Recept Signal Transduct Res ; 42(3): 268-278, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34096448

RESUMEN

Exosomes from human umbilical cord mesenchymal stem cells (HUCMSCs) containing microRNAs (miRNAs) have been underscored as possible therapeutic options for cancers. Hence, our goal here was to investigate the relevance of miR-320a-containing exosomes from HUCMSCs to lung cancer. First, H1299 and H460 cells were co-cultured with the exosomes overexpressing miR-320a from HUCMSCs. The data displayed that HUCMSCs-secreted exosomes expressing miR-320a exerted anti-tumor effects in vitro and in vivo. Online analysis available at TargetScan database revealed that miR-320a bound to sex-determining region Y-box 4 (SOX4), and the luciferase reporter gene assay clarified this targeting relationship. Next, a ß-catenin-specific agonist WAY-262611 was delivered into the H1299 and H460 cells to assess the effects of the Wnt/ß-catenin pathway on lung cancer cellular processes. The results demonstrated that WAY-262611 potentiated lung cancer cell viability, invasion, and migration, but inhibited cell apoptosis. Altogether, exosomes carrying miR-320a from HUCMSCs might suppress lung cancer cell growth via the SOX4/Wnt/ß-catenin axis, which highpoints the potency of exosomes expressing miR-320a as a possible therapeutic option for lung cancer treatment.


Asunto(s)
Exosomas , Neoplasias Pulmonares , Células Madre Mesenquimatosas , MicroARNs , Proliferación Celular/genética , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Humanos , Neoplasias Pulmonares/patología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Cordón Umbilical/metabolismo , beta Catenina/genética
20.
BMC Cancer ; 22(1): 238, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35241028

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are well-known regulators of cancer progression and chemoresistance in various types of cancers. This study was performed to investigate the function of hsa_circ_0000277 in esophageal squamous cell carcinoma (ESCC). METHODS: RNA levels were analyzed via the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8) assay was applied to determine cell proliferation and half maximal inhibitory concentration (IC50) of cisplatin (DDP). Colony formation ability was evaluated by colony formation assay. Cell cycle and apoptosis were measured using flow cytometry. RNA immunoprecipitation (RIP), pull-down assay and dual-luciferase reporter assays were performed for target interaction analysis. The protein levels were determined through western blot. Xenograft models were established for researching hsa_circ_0000277 function in vivo. RESULTS: Hsa_circ_0000277 expression was increased in ESCC cells and tissues, and it had important clinical significance. Downregulation of hsa_circ_0000277 repressed ESCC cell proliferation, colony formation, cell cycle, and DDP resistance. Hsa_circ_0000277 acted as a microRNA-873-5p (miR-873-5p) sponge and Sry-related high-mobility group box 4 (SOX4) was validated as a target of miR-873-5p. Moreover, hsa_circ_0000277/miR-873-5p axis and miR-873-5p/SOX4 axis regulated ESCC cell progression and DDP resistance. Hsa_circ_0000277/miR-873-5p axis activated SOX4/Wnt/ß-catenin signaling pathway. Hsa_circ_0000277 facilitated tumorigenesis and DDP resistance by miR-873-5p/SOX4 axis in vivo. CONCLUSION: These findings unraveled that hsa_circ_0000277 promoted ESCC progression and DDP resistance via miR-873-5p/SOX4/Wnt/ß-catenin axis, showing a specific molecular mechanism of carcinogenesis and chemoresistance in ESCC.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , ARN Circular/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Humanos , MicroARNs/efectos de los fármacos , Factores de Transcripción SOXC/efectos de los fármacos , Proteínas Wnt/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA