Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2314570121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739804

RESUMEN

Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glicerol-3-Fosfato O-Aciltransferasa , Lípidos , Raíces de Plantas , 1-Acilglicerol-3-Fosfato O-Aciltransferasa , Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Lípidos/química , Lípidos de la Membrana/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
2.
Plant J ; 119(1): 115-136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38573794

RESUMEN

Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.


Asunto(s)
Gossypium , Sitios de Carácter Cuantitativo , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Sitios de Carácter Cuantitativo/genética , Estrés Salino/genética , Mapeo Cromosómico , Fibra de Algodón , Fenotipo
3.
Plant J ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970620

RESUMEN

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.

4.
Plant J ; 117(6): 1836-1855, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217848

RESUMEN

Current climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive. This represents a significant gap in knowledge due to the fact that dually stressed plants often show unique responses at multiple levels not observed under single stress. In this review, we (i) consider possible effects of stress combinations from a theoretical point of view, (ii) summarize the current state of knowledge on signal transduction under single flooding stress, (iii) describe plant adaptation responses to flooding stress combined with four other abiotic stresses and (iv) propose molecular components of combinatorial flooding (hypoxia) stress adaptation based on their reported dual roles in multiple stresses. This way, more future emphasis may be placed on deciphering molecular mechanisms of combinatorial flooding stress adaptation, thereby potentially stimulating development of molecular tools to improve plant resilience towards multi-stress scenarios.


Asunto(s)
Inundaciones , Plantas , Estrés Fisiológico , Sequías , Hipoxia , Agua
5.
Plant Physiol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918899

RESUMEN

Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between two contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these two stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.

6.
Plant Physiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140753

RESUMEN

Mitogen-activated protein kinase kinases (MAPKKs) play a critical role in the mitogen-activated protein kinase (MAPK) signaling pathway, transducing external stimuli into intracellular responses and enabling plant adaptation to environmental challenges. Most research has focused on the model plant Arabidopsis (Arabidopsis thaliana). The systematic analysis and characterization of MAPKK genes across different plant species, particularly in cotton (Gossypium hirsutum), are somewhat limited. Here, we identified MAPKK family members from 66 different species, which clustered into 5 different sub-groups, and MAPKKs from four cotton species clustered together. Through further bioinformatic and expression analysis, GhMAPKK5 was identified as the most responsive MAPKK member to salt and drought stress among the 23 MAPKKs identified in Gossypium hirsutum. Silencing GhMAPKK5 in cotton through virus-induced gene silencing (VIGS) led to quicker wilting under salt and drought conditions, while overexpressing GhMAPKK5 in Arabidopsis enhanced root growth and seed germination under these stresses, demonstrating GhMAPKK5's positive role in stress tolerance. Transcriptomics and Yeast-Two-Hybrid assays revealed a MAPK cascade signal module comprising GhMEKK (Mitogen-activated protein kinase kinase kinases)3/8/31-GhMAPKK5-GhMAPK11/23. This signaling cascade may play a role in managing drought and salt stress by regulating transcription factor genes, such as WRKYs, which are involved in the biosynthesis and transport pathways of ABA, proline, and RALF. This study is highly important for further understanding the regulatory mechanism of MAPKK in cotton, contributing to its stress tolerance and offering potential in targets for genetic enhancement.

7.
Genomics ; 116(5): 110893, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944355

RESUMEN

Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.

8.
BMC Genomics ; 25(1): 252, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448813

RESUMEN

The SnRK (sucrose non-fermentation-related protein kinase) plays an important role in regulating various signals in plants. However, as an important bamboo shoot and wood species, the response mechanism of PheSnRK in Phyllostachys edulis to hormones, low energy and stress remains unclear. In this paper, we focused on the structure, expression, and response of SnRK to hormones and sugars. In this study, we identified 75 PheSnRK genes from the Moso bamboo genome, which can be divided into three groups according to the evolutionary relationship. Cis-element analysis has shown that the PheSnRK gene can respond to various hormones, light, and stress. The PheSnRK2.9 proteins were localized in the nucleus and cytoplasm. Transgenic experiments showed that overexpression of PheSnRK2.9 inhibited root development, the plants were salt-tolerant and exhibited slowed starch consumption in Arabidopsis in the dark. The results of yeast one-hybrid and dual luciferase assay showed that PheIAAs and PheNACs can regulate PheSnRK2.9 gene expression by binding to the promoter of PheSnRK2.9. This study provided a comprehensive understanding of PheSnRK genes of Moso bamboo, which provides valuable information for further research on energy regulation mechanism and stress response during the growth and development of Moso bamboo.


Asunto(s)
Arabidopsis , Poaceae , Poaceae/genética , Evolución Biológica , Bioensayo , Saccharomyces cerevisiae , Hormonas
9.
BMC Genomics ; 25(1): 625, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902611

RESUMEN

BACKGROUND: Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. Extensive research has shown that autophagy plays a pivotal role in both viral infection and replication processes. Despite the increasing research dedicated to autophagy, investigations into shrimp autophagy are relatively scarce. RESULTS: Based on three different methods, a total of 20 members of the ATGs were identified from F. chinensis, all of which contained an autophagy domain. These genes were divided into 18 subfamilies based on their different C-terminal domains, and were found to be located on 16 chromosomes. Quantitative real-time PCR (qRT-PCR) results showed that ATG genes were extensively distributed in all the tested tissues, with the highest expression levels were detected in muscle and eyestalk. To clarify the comprehensive roles of ATG genes upon biotic and abiotic stresses, we examined their expression patterns. The expression levels of multiple ATGs showed an initial increase followed by a decrease, with the highest expression levels observed at 6 h and/or 24 h after WSSV injection. The expression levels of three genes (ATG1, ATG3, and ATG4B) gradually increased until 60 h after injection. Under low-salt conditions, 12 ATG genes were significantly induced, and their transcription abundance peaked at 96 h after treatment. CONCLUSIONS: These results suggested that ATG genes may have significant roles in responding to various environmental stressors. Overall, this study provides a thorough characterization and expression analysis of ATG genes in F. chinensis, laying a strong foundation for further functional studies and promising potential in innate immunity.


Asunto(s)
Penaeidae , Estrés Fisiológico , Animales , Estrés Fisiológico/genética , Penaeidae/genética , Penaeidae/virología , Autofagia/genética , Perfilación de la Expresión Génica , Filogenia , Proteínas Relacionadas con la Autofagia/genética , Transcriptoma
10.
BMC Genomics ; 25(1): 636, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926665

RESUMEN

BACKGROUND: Jasmonate ZIM-domain (JAZ) proteins, which act as negative regulators in the jasmonic acid (JA) signalling pathway, have significant implications for plant development and response to abiotic stress. RESULTS: Through a comprehensive genome-wide analysis, a total of 20 members of the JAZ gene family specific to alfalfa were identified in its genome. Phylogenetic analysis divided these 20 MsJAZ genes into five subgroups. Gene structure analysis, protein motif analysis, and 3D protein structure analysis revealed that alfalfa JAZ genes in the same evolutionary branch share similar exon‒intron, motif, and 3D structure compositions. Eight segmental duplication events were identified among these 20 MsJAZ genes through collinearity analysis. Among the 32 chromosomes of the autotetraploid cultivated alfalfa, there were 20 MsJAZ genes distributed on 17 chromosomes. Extensive stress-related cis-acting elements were detected in the upstream sequences of MsJAZ genes, suggesting that their response to stress has an underlying function. Furthermore, the expression levels of MsJAZ genes were examined across various tissues and under the influence of salt stress conditions, revealing tissue-specific expression and regulation by salt stress. Through RT‒qPCR experiments, it was discovered that the relative expression levels of these six MsJAZ genes increased under salt stress. CONCLUSIONS: In summary, our study represents the first comprehensive identification and analysis of the JAZ gene family in alfalfa. These results provide important information for exploring the mechanism of JAZ genes in alfalfa salt tolerance and identifying candidate genes for improving the salt tolerance of autotetraploid cultivated alfalfa via genetic engineering in the future.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Familia de Multigenes , Filogenia , Proteínas de Plantas , Tetraploidía , Medicago sativa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Ciclopentanos/metabolismo , Genoma de Planta , Oxilipinas/farmacología , Perfilación de la Expresión Génica
11.
BMC Genomics ; 25(1): 385, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641598

RESUMEN

BACKGROUND: The C2H2 zinc finger protein family plays important roles in plants. However, precisely how C2H2s function in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear. RESULTS: In this study, a total of 69 OpC2H2 zinc finger protein genes were identified and clustered into five Groups. Seven tandem and ten fragment repeats were found in OpC2H2s, which underwent robust purifying selection. Of the identified motifs, motif 1 was present in all OpC2H2s and conserved at important binding sites. Most OpC2H2s possessed few introns and exons that could rapidly activate and react when faced with stress. The OpC2H2 promoter sequences mainly contained diverse regulatory elements, such as ARE, ABRE, and LTR. Under salt stress, two up-regulated OpC2H2s (OpC2H2-1 and OpC2H2-14) genes and one down-regulated OpC2H2 gene (OpC2H2-7) might serve as key transcription factors through the ABA and JA signaling pathways to regulate the growth and development of Opisthopappus species. CONCLUSION: The above results not only help to understand the function of C2H2 gene family but also drive progress in genetic improvement for the salt tolerance of Opisthopappus species.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Dedos de Zinc CYS2-HIS2/genética , Estrés Salino/genética , Genoma de Planta , Factores de Transcripción/metabolismo , Dedos de Zinc/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
12.
BMC Genomics ; 25(1): 513, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789947

RESUMEN

BACKGROUND: Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS: In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS: In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.


Asunto(s)
Aldehído Deshidrogenasa , Genoma de Planta , Gossypium , Familia de Multigenes , Filogenia , Gossypium/genética , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Silenciador del Gen
13.
BMC Genomics ; 25(1): 169, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347517

RESUMEN

BACKGROUND: ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS: In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION: This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Pyrus , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Pyrus/genética , Proteínas de Transporte de Membrana/genética , Estrés Fisiológico/genética , Adenosina Trifosfato , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas
14.
BMC Genomics ; 25(1): 12, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166720

RESUMEN

BACKGROUND: GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS: In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS: These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.


Asunto(s)
Genoma de Planta , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Fitomejoramiento , Estrés Fisiológico/genética , Tolerancia a la Sal
15.
BMC Genomics ; 25(1): 88, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254018

RESUMEN

BACKGROUND: As a key regulatory enzyme in the glycolysis pathway, pyruvate kinase (PK) plays crucial roles in multiple physiological processes during plant growth and is also involved in the abiotic stress response. However, little information is known about PKs in soybean. RESULTS: In this study, we identified 27 PK family genes against the genome of soybean cultivar Zhonghuang13. They were classified into 2 subfamilies including PKc and PKp. 22 segmental duplicated gene pairs and 1 tandem duplicated gene pair were identified and all of them experienced a strong purifying selective pressure during evolution. Furthermore, the abiotic stresses (especially salt stress) and hormone responsive cis-elements were present in the promoters of GmPK genes, suggesting their potential roles in abiotic stress tolerance. By performing the qRT-PCR, 6 GmPK genes that continuously respond to both NaCl and ABA were identified. Subsequently, GmPK21, which represented the most significant change under NaCl treatment was chosen for further study. Its encoded protein GmPK21 was localized in the cytoplasm and plasma membrane. The transgenic Arabidopsis overexpressing GmPK21 exhibited weakened salinity tolerance. CONCLUSIONS: This study provides genomic information of soybean PK genes and a molecular basis for mining salt tolerance function of PKs in the future.


Asunto(s)
Arabidopsis , Piruvato Quinasa , Glycine max/genética , Cloruro de Sodio , Genes Duplicados , Arabidopsis/genética
16.
BMC Genomics ; 25(1): 112, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273235

RESUMEN

BACKGROUND: Auxin transcription factor (ARF) is an important transcription factor that transmits auxin signals and is involved in plant growth and development as well as stress response. However, genome-wide identification and responses to abiotic and pathogen stresses of the ARF gene family in Cucurbita pepo L, especially pathogen stresses, have not been reported. RESULTS: Finally, 33 ARF genes (CpARF01 to CpARF33) were identified in C.pepo from the Cucurbitaceae genome database using bioinformatics methods. The putative protein contains 438 to 1071 amino acids, the isoelectric point is 4.99 to 8.54, and the molecular weight is 47759.36 to 117813.27 Da, the instability index ranged from 40.74 to 68.94, and the liposoluble index ranged from 62.56 to 76.18. The 33 genes were mainly localized in the nucleus and cytoplasm, and distributed on 16 chromosomes unevenly. Phylogenetic analysis showed that 33 CpARF proteins were divided into 6 groups. According to the amino acid sequence of CpARF proteins, 10 motifs were identified, and 1,3,6,8,10 motifs were highly conserved in most of the CpARF proteins. At the same time, it was found that genes in the same subfamily have similar gene structures. Cis-elements and protein interaction networks predicted that CpARF may be involved in abiotic factors related to the stress response. QRT-PCR analysis showed that most of the CpARF genes were upregulated under NaCl, PEG, and pathogen treatment compared to the control. Subcellular localization showed that CpARF22 was localized in the nucleus. The transgenic Arabidopsis thaliana lines with the CpARF22 gene enhanced their tolerance to salt and drought stress. CONCLUSION: In this study, we systematically analyzed the CpARF gene family and its expression patterns under drought, salt, and pathogen stress, which improved our understanding of the ARF protein of zucchini, and laid a solid foundation for functional analysis of the CpARF gene.


Asunto(s)
Cucurbita , Filogenia , Cucurbita/genética , Cucurbita/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
17.
Plant Mol Biol ; 114(2): 32, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512490

RESUMEN

Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fragaria/genética
18.
Plant Mol Biol ; 114(4): 75, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878261

RESUMEN

Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.


Asunto(s)
Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Zea mays , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/fisiología , Zea mays/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Estrés Oxidativo , Plantones/genética , Plantones/fisiología , Plantones/efectos de los fármacos , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Curr Issues Mol Biol ; 46(5): 4417-4436, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785536

RESUMEN

Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many areas. A solution to this problem is increasing the salt tolerance of crop plants. Transcription factors (TFs) within crop plants represent a key to understanding salt tolerance, as these proteins play important roles in the regulation of functional genes linked to salt stress. The basic leucine zipper (bZIP) TF has a well-documented role in the regulation of salt tolerance. To better understand how bZIP TFs are linked to salt tolerance, we performed a genome-wide analysis in wheat using the Chinese spring wheat genome, which has been assembled by the International Wheat Genome Sequencing Consortium. We identified 89 additional bZIP gene sequences, which brings the total of bZIP gene sequences in wheat to 237. The majority of these 237 sequences included a single bZIP protein domain; however, different combinations of five other domains also exist. The bZIP proteins are divided into ten subfamily groups. Using an in silico analysis, we identified five bZIP genes (ABF2, ABF4, ABI5, EMBP1, and VIP1) that were involved in regulating salt stress. By scrutinizing the binding properties to the 2000 bp upstream region, we identified putative functional genes under the regulation of these TFs. Expression analyses of plant tissue that had been treated with or without 100 mM NaCl revealed variable patterns between the TFs and functional genes. For example, an increased expression of ABF4 was correlated with an increased expression of the corresponding functional genes in both root and shoot tissues, whereas VIP1 downregulation in root tissues strongly decreased the expression of two functional genes. Identifying strategies to sustain the expression of the functional genes described in this study could enhance wheat's salt tolerance.

20.
Plant Cell Physiol ; 65(4): 576-589, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591870

RESUMEN

In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN Mitocondrial , Mitocondrias , Estrés Salino , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Salino/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Regulación de la Expresión Génica de las Plantas , Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA