Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34409448

RESUMEN

Light-sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Animales , Drosophila/metabolismo , Drosophila/fisiología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiología , Desarrollo Embrionario/fisiología , Miosina Tipo II/metabolismo
2.
BMC Biol ; 20(1): 84, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410342

RESUMEN

BACKGROUND: The structural connectivity of neurons in the brain allows active neurons to impact the physiology of target neuron types with which they are functionally connected. While the structural connectome is at the basis of functional connectome, it is the functional connectivity measured through correlations between time series of individual neurophysiological events that underlies behavioral and mental states. However, in light of the diverse neuronal cell types populating the brain and their unique connectivity properties, both neuronal activity and functional connectivity are heterogeneous across the brain, and the nature of their relationship is not clear. Here, we employ brain-wide calcium imaging at cellular resolution in larval zebrafish to understand the principles of resting state functional connectivity. RESULTS: We recorded the spontaneous activity of >12,000 neurons in the awake resting state forebrain. By classifying their activity (i.e., variances of ΔF/F across time) and functional connectivity into three levels (high, medium, low), we find that highly active neurons have low functional connections and highly connected neurons are of low activity. This finding holds true when neuronal activity and functional connectivity data are classified into five instead of three levels, and in whole brain spontaneous activity datasets. Moreover, such activity-connectivity relationship is not observed in randomly shuffled, noise-added, or simulated datasets, suggesting that it reflects an intrinsic brain network property. Intriguingly, deploying the same analytical tools on functional magnetic resonance imaging (fMRI) data from the resting state human brain, we uncover a similar relationship between activity (signal variance over time) and functional connectivity, that is, regions of high activity are non-overlapping with those of high connectivity. CONCLUSIONS: We found a mutually exclusive relationship between high activity (signal variance over time) and high functional connectivity of neurons in zebrafish and human brains. These findings reveal a previously unknown and evolutionarily conserved brain organizational principle, which has implications for understanding disease states and designing artificial neuronal networks.


Asunto(s)
Conectoma , Pez Cebra , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Neuronas
3.
Differentiation ; 111: 12-21, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31634681

RESUMEN

Technological advances in three-dimensional (3D) reconstruction techniques have previously enabled paradigm shifts in our understanding of human embryonic and fetal development. Light sheet fluorescence microscopy (LSFM) is a recently-developed technique that uses thin planes of light to optically section whole-mount cleared and immunolabeled biologic specimens. The advent of commercially-available light sheet microscopes has facilitated a new generation of research into protein localization and tissue dynamics at extremely high resolution. Our group has applied LSFM to study developing human fetal external genitalia, internal genitalia and kidneys. This review describes LSFM and presents our group's technique for preparing, clearing, immunostaining and imaging human fetal urogenital specimens. We then present light sheet images and videos of each element of the developing human urogenital system. To the extent of our knowledge, the work conducted by our laboratory represents the first description of a method for performing LSFM on the full human urogenital system during the embryonic and fetal periods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Manejo de Especímenes/métodos , Sistema Urogenital/citología , Humanos
4.
J Fluoresc ; 28(1): 29-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29404971

RESUMEN

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 µm. We detect and report our instrumental figures of merit, control values of fluorescence properties of single nano crystals in comparison to both standard widefield configurations, and also values of nanocrystals in multicellular "fruiting bodies" of Dictyostelium, an excellent control as a model developmental system. In the Dictyostelium , we also report some of our first tracking of single nanocrystals with SPIM. The new SPIM setup represents a new technique, which enables fast single molecule imaging and tracking in living systems.

5.
J Fluoresc ; 28(1): 29-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21975517

RESUMEN

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 µm. We detect and report our instrumental figures of merit, control values of fluorescence properties of single nano crystals in comparison to both standard widefield configurations, and also values of nanocrystals in multicellular "fruiting bodies" of Dictyostelium, an excellent control as a model developmental system. In the Dictyostelium , we also report some of our first tracking of single nanocrystals with SPIM. The new SPIM setup represents a new technique, which enables fast single molecule imaging and tracking in living systems.

6.
J Microsc ; 258(2): 105-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25611324

RESUMEN

We describe a microscope capable of both light sheet fluorescence microscopy and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: light sheet fluorescence microscopy provides three-dimensional imaging of fluorescently labelled components of multicellular systems with high speed, large fields of view, and low phototoxicity, whereas differential interference contrast microscopy reveals the unlabelled neighbourhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a single Nomarski prism for differential interference contrast microscopy and a shared detection path for both imaging modes enables simple integration of the two techniques in one custom microscope. We provide several examples of the utility of the resulting instrument, focusing especially on the digestive tract of the larval zebrafish, revealing in this complex and heterogeneous environment anatomical features, the behaviour of commensal microbes, immune cell motions, and more.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Microscopía Fluorescente/métodos , Microscopía de Interferencia/métodos , Animales , Microscopía Intravital/instrumentación , Luz , Microscopía Fluorescente/instrumentación , Microscopía de Interferencia/instrumentación , Pez Cebra/anatomía & histología
7.
Yale J Biol Med ; 87(1): 21-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24600334

RESUMEN

Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy.


Asunto(s)
Mediciones Luminiscentes/métodos , Microscopía Confocal/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Fotoquímica/métodos , Animales , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Colorantes Fluorescentes/química , Luz , Mediciones Luminiscentes/instrumentación , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Confocal/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Fotoquímica/instrumentación , Reproducibilidad de los Resultados , Pez Cebra/embriología , Pez Cebra/metabolismo
8.
Neurophotonics ; 11(3): 035006, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39114857

RESUMEN

Significance: Light-sheet microscopy is a powerful imaging technique that achieves optical sectioning via selective illumination of individual sample planes. However, when the sample contains opaque or scattering tissues, the incident light sheet may not be able to uniformly excite the entire sample. For example, in the context of larval zebrafish whole-brain imaging, occlusion by the eyes prevents access to a significant portion of the brain during common implementations using unidirectional illumination. Aim: We introduce mirror-assisted light-sheet microscopy (mLSM), a simple inexpensive method that can be implemented on existing digitally scanned light-sheet setups by adding a single optical element-a mirrored micro-prism. The prism is placed near the sample to generate a second excitation path for accessing previously obstructed regions. Approach: Scanning the laser beam onto the mirror generates a second, reflected illumination path that circumvents the occlusion. Online tuning of the scanning and laser power waveforms enables near uniform sample excitation with dual illumination. Results: mLSM produces cellular-resolution images of zebrafish brain regions inaccessible to unidirectional illumination. The imaging quality in regions illuminated by the direct or reflected sheet is adjustable by translating the excitation objective. The prism does not interfere with visually guided behavior. Conclusions: mLSM presents an easy-to-implement, cost-effective way to upgrade an existing light-sheet system to obtain more imaging data from a biological sample.

9.
Sci Rep ; 14(1): 7247, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538638

RESUMEN

A wide-field microscope with epi-fluorescence and selective plane illumination was combined with a single-photon avalanche diode (SPAD) array camera to enable live-cell fluorescence lifetime imaging (FLIM) using time-correlated single-photon counting (TCSPC). The camera sensor comprised of 192 × 128 pixels, each integrating a single SPAD and a time-to-digital converter. Jointly, they produced a stream of single-photon images of photon arrival times with ≈ 38 ps accuracy. The photon arrival times were subject to systematic delays and nonlinearities, which were corrected by a Monte-Carlo algorithm. The SPAD camera was then applied to FLIM where histogramming the resulting photon arrival times in each pixel resulted in decays compatible with common data processing pipelines for fluorescence lifetime analysis. The capabilities of the TCSPC camera-based FLIM microscope were demonstrated by imaging living unicellular photosynthetic algae and artificial lipid vesicles. Epi-fluorescence illumination enabled rapid fluorescence lifetime imaging of living cells and selective-plane illumination enabled 3-dimensional FLIM of stationary samples.


Asunto(s)
Algoritmos , Microscopía Fluorescente/métodos
10.
J Microsc ; 251(2): 128-32, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23691992

RESUMEN

Single Plane Illumination Microscopy is an emerging and powerful technology for live imaging of whole living organisms. However, sample handling that relies on specimen embedding in agarose or gel is often a key limitation, especially for time-lapse monitoring. To address this issue, we developed a new concept for a holder device allowing us to prepare a sample container made of hydrogel. The production process of this holder is based on 3D printing of both a frame and casting devices. The simplicity of production and the advantages of this versatile new sample holder are shown with time-lapse recording of multicellular tumour spheroid growth. More importantly, we also show that cell division is not impaired in contrast to what is observed with gel embedding. The benefit of this new holder for other sample types, applications and experiments remains to be evaluated, but this innovative concept of fully customizable sample holder preparation potentially represents a major step forward to facilitate the large diffusion of single plane illumination microscopy technology.


Asunto(s)
Imagenología Tridimensional/instrumentación , Iluminación/instrumentación , Microscopía/instrumentación , Imagen de Lapso de Tiempo/instrumentación , Línea Celular Tumoral , Humanos , Imagenología Tridimensional/métodos , Iluminación/métodos , Microscopía/métodos , Imagen de Lapso de Tiempo/métodos
11.
Curr Protoc ; 2(7): e448, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35838628

RESUMEN

In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Asunto(s)
Imagenología Tridimensional , Iluminación , Animales , Imagenología Tridimensional/métodos , Iluminación/métodos , Ratones , Microscopía Fluorescente/métodos
12.
Biofabrication ; 14(4)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35793653

RESUMEN

Precision-cut-tissues (PCTs), which preserve many aspects of a tissue's microenvironment, are typically imaged using conventional sample dishes and chambers. These can require large amounts of reagent and, when used for flow-through experiments, the shear forces applied on the tissues are often ill-defined. Their physical design also makes it difficult to image large volumes and repetitively image smaller regions of interest in the living slice. We report here on the design of a versatile microfluidic device capable of holding mouse or human pancreas PCTs for 3D fluorescence imaging using confocal and selective plane illumination microscopy (SPIM). Our design positions PCTs within a 5 × 5 mm × 140µm deep chamber fitted with 150µm tall channels to facilitate media exchange. Shear stress in the device is localized to small regions on the surface of the tissue and can be easily controlled. This design allows for media exchange at flowrates ∼10-fold lower than those required for conventional chambers. Finally, this design allows for imaging the same immunofluorescently labeled PCT with high resolution on a confocal and with large field of view on a SPIM, without adversely affecting image quality.


Asunto(s)
Imagenología Tridimensional , Dispositivos Laboratorio en un Chip , Animales , Humanos , Imagenología Tridimensional/métodos , Ratones , Microscopía Fluorescente/métodos , Imagen Óptica
13.
J Cereb Blood Flow Metab ; 41(7): 1536-1546, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33043767

RESUMEN

Three-dimensional assessment of optically cleared, entire organs and organisms has recently become possible by tissue clearing and selective plane illumination microscopy ("ultramicroscopy"). Resulting datasets can be highly complex, encompass over a thousand images with millions of objects and data of several gigabytes per acquisition. This constitutes a major challenge for quantitative analysis. We have developed post-processing tools to quantify millions of microvessels and their distribution in three-dimensional datasets from ultramicroscopy and demonstrate the capabilities of our pipeline within entire mouse brains and embryos. Using our developed acquisition, segmentation, and analysis platform, we quantify physiological vascular networks in development and the healthy brain. We compare various geometric vessel parameters (e.g. vessel density, radius, tortuosity) in the embryonic spinal cord and brain as well as in different brain regions (basal ganglia, corpus callosum, cortex). White matter tract structures (corpus callosum, spinal cord) showed lower microvascular branch densities and longer vessel branch length compared to grey matter (cortex, basal ganglia). Furthermore, we assess tumor neoangiogenesis in a mouse glioma model to compare tumor core and tumor border. The developed methodology allows rapid quantification of three-dimensional datasets by semi-automated segmentation of fluorescently labeled objects with conventional computer hardware. Our approach can aid preclinical investigations and paves the way towards "quantitative ultramicroscopy".


Asunto(s)
Encéfalo/irrigación sanguínea , Glioma/patología , Microscopía/métodos , Microvasos/patología , Neovascularización Patológica/patología , Animales , Glioma/diagnóstico por imagen , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microvasos/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen
14.
J Biomed Opt ; 26(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34894114

RESUMEN

SIGNIFICANCE: Selective plane illumination microscopy (SPIM) is an emerging fluorescent imaging technique suitable for noninvasive volumetric imaging of C. elegans. These promising microscopy systems, however, are scarce in academic and research institutions due to their high cost and technical complexities. Simple and low-cost solutions that enable conversion of commonplace wide-field microscopes to rapid SPIM platforms promote widespread adoption of SPIM by biologist for studying neuronal expressions of C. elegans. AIM: We sought to develop a simple and low-cost optofluidic add-on device that enables rapid and immobilization-free volumetric SPIM imaging of C. elegans with conventional fluorescent microscopes. APPROACH: A polydimethylsiloxane (PDMS)-based device with integrated optical and fluidic elements was developed as a low-cost and miniaturized SPIM add-on for the conventional wide-field microscope. The developed optofluidic chip contained an integrated PDMS cylindrical lens for on-chip generation of the light-sheet across a microchannel. Cross-sectional SPIM images of C. elegans were continuously acquired by the native objective of microscope as worms flowed in an L-shape microchannel and through the light sheet. RESULTS: On-chip SPIM imaging of C. elegans strains demonstrated possibility of visualizing the entire neuronal system in few seconds at single-neuron resolution, with high contrast and without worm immobilization. Volumetric visualization of neuronal system from the acquired cross-sectional two-dimensional images is also demonstrated, enabling the standard microscope to acquire three-dimensional fluorescent images of C. elegans. The full-width at half-maximum width of the point spread function was measured as 1.1 and 2.4 µm in the lateral and axial directions, respectively. CONCLUSION: The developed low-cost optofluidic device is capable of continuous SPIM imaging of C. elegans model organism with a conventional fluorescent microscope, at high speed, and with single neuron resolution.


Asunto(s)
Caenorhabditis elegans , Microscopía , Animales , Estudios Transversales , Iluminación
15.
Front Cell Dev Biol ; 9: 671218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124053

RESUMEN

Wnt proteins are a family of hydrophobic cysteine-rich secreted glycoproteins that regulate a gamut of physiological processes involved in embryonic development and tissue homeostasis. Wnt ligands are post-translationally lipidated in the endoplasmic reticulum (ER), a step essential for its membrane targeting, association with lipid domains, secretion and interaction with receptors. However, at which residue(s) Wnts are lipidated remains an open question. Initially it was proposed that Wnts are lipid-modified at their conserved cysteine and serine residues (C77 and S209 in mWnt3a), and mutations in either residue impedes its secretion and activity. Conversely, some studies suggested that serine is the only lipidated residue in Wnts, and substitution of serine with alanine leads to retention of Wnts in the ER. In this work, we investigate whether in zebrafish neural tissues Wnt3 is lipidated at one or both conserved residues. To this end, we substitute the homologous cysteine and serine residues of zebrafish Wnt3 with alanine (C80A and S212A) and investigate their influence on Wnt3 membrane organization, secretion, interaction and signaling activity. Collectively, our results indicate that Wnt3 is lipid modified at its C80 and S212 residues. Further, we find that lipid addition at either C80 or S212 is sufficient for its secretion and membrane organization, while the lipid modification at S212 is indispensable for receptor interaction and signaling.

16.
ACS Sens ; 6(7): 2654-2663, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34197085

RESUMEN

The miniSPIM is a miniaturized light-sheet microscope that enables imaging with optical sectioning on mobile camera devices such as smartphones and single-board computers. Applications of the miniSPIM include biosensing, field research, and education where maximum portability and robustness, low power consumption, and low cost are key. Here, it is shown how all of the components of a simple light-sheet microscope can be integrated within a footprint smaller than the average smartphone. Example applications include the quantification of the motion of microparticles and bacteria in fluids, the characterization of solvent polarity based on spectral shifts of the lipid probe Nile Red, and three-dimensional (3D) and time-lapse autofluorescence imaging of a live zebrafish embryo.


Asunto(s)
Imagenología Tridimensional , Pez Cebra , Animales , Microscopía Fluorescente , Teléfono Inteligente
17.
Cell Rep ; 33(5): 108349, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147464

RESUMEN

We present a tiling light sheet microscope compatible with all tissue clearing methods for rapid multicolor 3D imaging of cleared tissues with micron-scale (4 × 4 × 10 µm3) to submicron-scale (0.3 × 0.3 × 1 µm3) spatial resolution. The resolving ability is improved to sub-100 nm (70 × 70 × 200 nm3) via tissue expansion. The microscope uses tiling light sheets to achieve higher spatial resolution and better optical sectioning ability than conventional light sheet microscopes. The illumination light is phase modulated to adjust the position and intensity profile of the light sheet based on the desired spatial resolution and imaging speed and to keep the microscope aligned. The ability of the microscope to align via phase modulation alone also ensures its accuracy for multicolor 3D imaging and makes the microscope reliable and easy to operate. Here we describe the working principle and design of the microscope. We demonstrate its utility by imaging various cleared tissues.


Asunto(s)
Imagenología Tridimensional , Microscopía Fluorescente/métodos , Especificidad de Órganos , Animales , Proteínas Fluorescentes Verdes/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/instrumentación , Planarias/citología , Células Madre/citología
18.
Plant Methods ; 15: 155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31889979

RESUMEN

BACKGROUND: Plant feeding, free-living nematodes cause extensive damage to plant roots by direct feeding and, in the case of some trichodorid and longidorid species, through the transmission of viruses. Developing more environmentally friendly, target-specific nematicides is currently impeded by slow and laborious methods of toxicity testing. Here, we developed a bioactivity assay based on the dynamics of light 'speckle' generated by living cells and we demonstrate its application by assessing chemicals' toxicity to different nematode trophic groups. RESULTS: Free-living nematode populations extracted from soil were exposed to methanol and phenyl isothiocyanate (PEITC). Biospeckle analysis revealed differing behavioural responses as a function of nematode feeding groups. Trichodorus nematodes were less sensitive than were bacterial feeding nematodes or non-trichodorid plant feeding nematodes. Following 24 h of exposure to PEITC, bioactivity significantly decreased for plant and bacterial feeders but not for Trichodorus nematodes. Decreases in movement for plant and bacterial feeders in the presence of PEITC also led to measurable changes to the morphology of biospeckle patterns. CONCLUSIONS: Biospeckle analysis can be used to accelerate the screening of nematode bioactivity, thereby providing a fast way of testing the specificity of potential nematicidal compounds. With nematodes' distinctive movement and activity levels being visible in the biospeckle pattern, the technique has potential to screen the behavioural responses of diverse trophic nematode communities. The method discriminates both behavioural responses, morphological traits and activity levels and hence could be used to assess the specificity of nematicidal compounds.

19.
Neuron ; 99(2): 293-301.e4, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29983325

RESUMEN

Looming visual stimuli result in escape responses that are conserved from insects to humans. Despite their importance for survival, the circuits mediating visual startle have only recently been explored in vertebrates. Here we show that the zebrafish thalamus is a luminance detector critical to visual escape. Thalamic projection neurons deliver dim-specific information to the optic tectum, and ablations of these projections disrupt normal tectal responses to looms. Without this information, larvae are less likely to escape from dark looming stimuli and lose the ability to escape away from the source of the loom. Remarkably, when paired with an isoluminant loom stimulus to the opposite eye, dimming is sufficient to increase startle probability and to reverse the direction of the escape so that it is toward the loom. We suggest that bilateral comparisons of luminance, relayed from the thalamus to the tectum, facilitate escape responses and are essential for their directionality.


Asunto(s)
Reacción de Fuga/fisiología , Estimulación Luminosa/métodos , Reflejo de Sobresalto/fisiología , Colículos Superiores/fisiología , Tálamo/fisiología , Vías Visuales/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Masculino , Colículos Superiores/química , Tálamo/química , Vías Visuales/química , Pez Cebra
20.
Methods Mol Biol ; 1814: 541-559, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956254

RESUMEN

In the past decade, live-cell single molecule imaging studies have provided unique insights on how DNA-binding molecules such as transcription factors explore the nuclear environment to search for and bind to their targets. However, due to technological limitations, single molecule experiments in living specimens have largely been limited to monolayer cell cultures. Lattice light-sheet microscopy overcomes these limitations and has now enabled single molecule imaging within thicker specimens such as embryos. Here we describe a general procedure to perform single molecule imaging in living Drosophila melanogaster embryos using lattice light-sheet microscopy. This protocol allows direct observation of both transcription factor diffusion and binding dynamics. Finally, we illustrate how this Drosophila protocol can be extended to other thick samples using single molecule imaging in live mouse embryos as an example.


Asunto(s)
Drosophila melanogaster/embriología , Embrión no Mamífero/diagnóstico por imagen , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Animales , Análisis de Datos , Embrión de Mamíferos/citología , Embrión de Mamíferos/diagnóstico por imagen , Embrión no Mamífero/citología , Ratones , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA