Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254120

RESUMEN

Hair cells of the inner ear and lateral-line system rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is critical for ribbon-synapse maturation in hair cells. In both mouse and zebrafish models, the loss of Nrxn3 results in significantly fewer intact ribbon synapses. We show in zebrafish that initially, nrxn3 mutants have normal pre- and post-synapse numbers, but synapses fail to pair, leading to postsynapse loss. We also demonstrate that Nrxn3 subtly influences synapse selectivity in zebrafish lateral-line hair cells that detect anterior flow. A 60% loss of synapses in zebrafish nrxn3 mutants dramatically reduces pre- and post-synaptic responses. Despite fewer synapses, auditory responses in zebrafish and mice are unaffected. This work demonstrates that Nrxn3 is a critical and conserved molecule required for the maturation of ribbon synapses. Understanding how ribbon synapses mature is essential to generating novel therapies to treat synaptopathies linked to auditory or vestibular dysfunction.

2.
3.
Nature ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538892
4.
Nature ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327520
6.
Nature ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898263
8.
Nature ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632430
9.
Biol Lett ; 20(2): 20230480, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38412964

RESUMEN

Active electroreception-the ability to detect objects and communicate with conspecifics via the detection and generation of electric organ discharges (EODs)-has evolved convergently in several fish lineages. South American electric fishes (Gymnotiformes) are a highly species-rich group, possibly in part due to evolution of an electric organ (EO) that can produce diverse EODs. Neofunctionalization of a voltage-gated sodium channel gene accompanied the evolution of electrogenic tissue from muscle and resulted in a novel gene (scn4aa) uniquely expressed in the EO. Here, we investigate the link between variation in scn4aa and differences in EOD waveform. We combine gymnotiform scn4aa sequences encoding the C-terminus of the Nav1.4a protein, with biogeographic data and EOD recordings to test whether physiological transitions among EOD types accompany differential selection pressures on scn4aa. We found positive selection on scn4aa coincided with shifts in EOD types. Species that evolved in the absence of predators, which likely selected for reduced EOD complexity, exhibited increased scn4aa evolutionary rates. We model mutations in the protein that may underlie changes in protein function and discuss our findings in the context of gymnotiform signalling ecology. Together, this work sheds light on the selective forces underpinning major evolutionary transitions in electric signal production.


Asunto(s)
Pez Eléctrico , Animales , Pez Eléctrico/genética , Órgano Eléctrico/fisiología , Filogenia , Canales de Sodio/genética , América del Sur
10.
Nature ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880525
11.
Nature ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949130
12.
Nature ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755149
14.
Nature ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923954
15.
Nature ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845479
16.
Nature ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37853192
17.
Nature ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045964
18.
Dev Dyn ; 252(1): 81-103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972036

RESUMEN

Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.


Asunto(s)
Orientación del Axón , Axones , Animales , Axones/fisiología , Células Receptoras Sensoriales , Neuroglía , Órganos de los Sentidos
19.
J Exp Biol ; 226(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-38035544

RESUMEN

For the two dolphin species Sotalia guianensis (Guiana dolphin) and Tursiops truncatus (bottlenose dolphin), previous research has shown that the vibrissal crypts located on the rostrum represent highly innervated, ampullary electroreceptors and that both species are correspondingly sensitive to weak electric fields. In the present study, for a comparative assessment of the sensitivity of the bottlenose dolphin's electroreceptive system, we determined detection thresholds for DC and AC electric fields with two bottlenose dolphins. In a psychophysical experiment, the animals were trained to respond to electric field stimuli using the go/no-go paradigm. We show that the two bottlenose dolphins are able to detect DC electric fields as low as 2.4 and 5.5 µV cm-1, respectively, a detection threshold in the same order of magnitude as those in the platypus and the Guiana dolphin. Detection thresholds for AC fields (1, 5 and 25 Hz) were generally higher than those for DC fields, and the sensitivity for AC fields decreased with increasing frequency. Although the electroreceptive sensitivity of dolphins is lower than that of elasmobranchs, it is suggested that it allows for both micro- and macro-scale orientation. In dolphins pursuing benthic foraging strategies, electroreception may facilitate short-range prey detection and target-oriented snapping of their prey. Furthermore, the ability to detect weak electric fields may enable dolphins to perceive the Earth's magnetic field through induction-based magnetoreception, thus allowing large-scale orientation.


Asunto(s)
Delfín Mular , Animales , Sensación , Vibrisas
20.
Nature ; 611(7937): 667-668, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352111

Asunto(s)
Dípteros , Viento , Animales , Olfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA