RESUMEN
Loss of TGF-ß growth-inhibitory responses is a hallmark of human cancer. However, the molecular mechanisms underlying the TGF-ß resistance of cancer cells remain to be fully elucidated. Splicing factor proline- and glutamine-rich (SFPQ) is a prion-like RNA-binding protein that is frequently upregulated in human cancers. In this study, we identified SFPQ as a potent suppressor of TGF-ß signaling. The ability of SFPQ to suppress TGF-ß responses depends on its prion-like domain (PrLD) that drives liquid-liquid phase separation (LLPS). Mechanistically, SFPQ physically restrained Smad4 in its condensates, which excluded Smad4 from the Smad complex and chromatin occupancy and thus functionally dampened Smad-dependent transcriptional responses. Accordingly, SFPQ deficiency or loss of phase separation activities rendered human cells hypersensitive to TGF-ß responses. Together, our data identify an important function of SFPQ through LLPS that suppresses Smad transcriptional activation and TGF-ß tumor-suppressive activity.
Asunto(s)
Neoplasias , Priones , Humanos , Activación Transcripcional , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Unión al ARNRESUMEN
Rho-associated coiled-coil kinase (ROCK) inhibition decreases tumourogenic growth, proliferation and angiogenesis. Multifaceted evidences are there about the role of ROCK in cancer progression, but isoform specific analysis in secondary pulmonary melanoma is still unaddressed. This study explored the operating function of ROCK in the metastasis of B16F10 mice melanoma cell line. Inhibition by KD-025 indicated dual wielding role of ROCKII as it is associated with the regulation of MMP9 activity responsible for extra-cellular matrix (ECM) degradation as well as angiogenic invasion as an effect of Src-FAK-STAT3 interaction dependent VEGF switching. We found the assisting role of ROCKII, not ROCKI in nuclear localization of Smads that effectively increased MMP9 expression and activity (p < 0.01). This cleaved the protein components of ECM thereby played a crucial role in tissue remodeling at secondary site during establishment of metastatic tumour. ROCKII phosphorylation at Ser1366 as an activation of the same was imprinted essential for oncogenic molecular bagatelle leading to histo-architectural change of pulmonary tissue with extracellular matrix degradation as a consequence of invasion. Direct correlation of pROCKIISer1366 with MMP9 as well as VEGF expression in vivo studies cue to demonstrate the importance of pROCKIISer1366 inhibition in the context of angiogenesis, and metastasis suggesting ROCKII signaling as a possible target for the treatment of secondary lung cancer specially in metastatic melanoma.