Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(6): 100785, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750696

RESUMEN

The molecular mechanisms that drive the onset and development of osteoarthritis (OA) remain largely unknown. In this exploratory study, we used a proteomic platform (SOMAscan assay) to measure the relative abundance of more than 6000 proteins in synovial fluid (SF) from knees of human donors with healthy or mildly degenerated tissues, and knees with late-stage OA from patients undergoing knee replacement surgery. Using a linear mixed effects model, we estimated the differential abundance of 6251 proteins between the three groups. We found 583 proteins upregulated in the late-stage OA, including MMP1, collagenase 3 and interleukin-6. Further, we selected 760 proteins (800 aptamers) based on absolute fold changes between the healthy and mild degeneration groups. To those, we applied Gaussian Graphical Models (GGMs) to analyze the conditional dependence of proteins and to identify key proteins and subnetworks involved in early OA pathogenesis. After regularization and stability selection, we identified 102 proteins involved in GGM networks. Notably, network complexity was lost in the protein graph for mild degeneration when compared to controls, suggesting a disruption in the regular protein interplay. Furthermore, among our main findings were several downregulated (in mild degeneration versus healthy) proteins with unique interactions in the healthy group, one of which, SLCO5A1, has not previously been associated with OA. Our results suggest that this protein is important for healthy joint function. Further, our data suggests that SF proteomics, combined with GGMs, can reveal novel insights into the molecular pathogenesis and identification of biomarker candidates for early-stage OA.


Asunto(s)
Mapas de Interacción de Proteínas , Proteómica , Líquido Sinovial , Humanos , Líquido Sinovial/metabolismo , Proteómica/métodos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Interleucina-6/metabolismo , Proteoma/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo
2.
Mol Cell Proteomics ; : 100830, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147028

RESUMEN

The study of the cellular secretome using proteomic techniques continues to capture the attention of the research community across a broad range of topics in biomedical research. Due to their untargeted nature, independence from the model system employed, historically superior depth of analysis, as well as comparative affordability, mass spectrometry-based approaches traditionally dominate such analyses. More recently, however, affinity-based proteomic assays have massively gained in analytical depth, which together with their high sensitivity, dynamic range coverage as well as high throughput capabilities render them exquisitely suited to secretome analysis. In this review, we revisit the analytical challenges implied by secretomics and provide an overview of affinity-based proteomic platforms currently available for such analyses, using the study of the tumor secretome as an example for basic and translational research.

3.
J Proteome Res ; 23(7): 2598-2607, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965919

RESUMEN

To our knowledge, calibration curves or other validations for thousands of SomaScan aptamers are not publicly available. Moreover, the abundance of urine proteins obtained from these assays is not routinely validated with orthogonal methods (OMs). We report an in-depth comparison of SomaScan readout for 23 proteins in urine samples from patients with diabetic kidney disease (n = 118) vs OMs, including liquid chromatography-targeted mass spectrometry (LC-MS), ELISA, and nephelometry. Pearson correlation between urine abundance of the 23 proteins from SomaScan 3.2 vs OMs ranged from -0.58 to 0.86, with a median (interquartile ratio, [IQR]) of 0.49 (0.18, 0.53). In multivariable linear regression, the SomaScan readout for 6 of the 23 examined proteins (26%) was most strongly associated with the OM-derived abundance of the same (target) protein. For 3 of 23 (13%), the SomaScan and OM-derived abundance of each protein were significantly associated, but the SomaScan readout was more strongly associated with OM-derived abundance of one or more "off-target" proteins. For the remaining 14 proteins (61%), the SomaScan readouts were not significantly associated with the OM-derived abundance of the targeted proteins. In 6 of the latest group, the SomaScan readout was not associated with urine abundance of any of the 23 quantified proteins. To sum, over half of the SomaScan results could not be confirmed by independent orthogonal methods.


Asunto(s)
Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/orina , Cromatografía Liquida/métodos , Masculino , Femenino , Persona de Mediana Edad , Ensayo de Inmunoadsorción Enzimática , Proteómica/métodos , Espectrometría de Masas/métodos , Anciano , Nefelometría y Turbidimetría , Biomarcadores/orina , Proteinuria/orina
4.
Expert Rev Proteomics ; 21(5-6): 247-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753434

RESUMEN

INTRODUCTION: Atopic Dermatitis (AD) is the most common inflammatory skin disease with a complex and multifactorial pathogenesis. The use of proteomics in understanding AD has yielded the discovery of novel biomarkers and may further expand therapeutic options. AREAS COVERED: This review summarizes the most recent proteomic studies and the methodologies used in AD. It describes novel biomarkers that may monitor disease course and therapeutic response. The review also highlights skin and blood biomarkers characterizing different AD phenotypes and differentiates AD from other inflammatory skin disorders. A literature search was conducted by querying Scopus, Google Scholar, Pubmed/Medline, and Clinicaltrials.gov up to June 2023. EXPERT OPINION: The integration of proteomics into research efforts in atopic dermatitis has broadened our understanding of the molecular profile of AD through the discovery of new biomarkers. In addition, proteomics may contribute to the development of targeted treatments ultimately improving personalized medicine. An increasing number of studies are utilizing proteomics to explore this heterogeneous disease.


Asunto(s)
Biomarcadores , Dermatitis Atópica , Proteómica , Dermatitis Atópica/metabolismo , Dermatitis Atópica/sangre , Dermatitis Atópica/patología , Humanos , Proteómica/métodos , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteoma/metabolismo
5.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39131392

RESUMEN

Introduction: African Americans (AA) are widely underrepresented in plasma biomarker studies for Alzheimer's disease (AD) and current diagnostic biomarker candidates do not reflect the heterogeneity of AD. Methods: Untargeted proteome measurements were obtained using the SomaScan 7k platform to identify novel plasma biomarkers for AD in a cohort of AA clinically diagnosed as AD dementia (n=183) or cognitively unimpaired (CU, n=145). Machine learning approaches were implemented to identify the set of plasma proteins that yields the best classification accuracy. Results: A plasma protein panel achieved an area under the curve (AUC) of 0.91 to classify AD dementia vs CU. The reproducibility of this finding was observed in the ANMerge plasma and AMP-AD Diversity brain datasets (AUC=0.83; AUC=0.94). Discussion: This study demonstrates the potential of biomarker discovery through untargeted plasma proteomics and machine learning approaches. Our findings also highlight the potential importance of the matrisome and cerebrovascular dysfunction in AD pathophysiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA