Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.288
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30526160

RESUMEN

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Inmunoterapia Adoptiva/tendencias , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/fisiología , Animales , Ingeniería Genética , Humanos , Neoplasias/inmunología , Linfocitos T/trasplante , Estados Unidos , United States Food and Drug Administration
2.
Annu Rev Immunol ; 35: 229-253, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446063

RESUMEN

The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.


Asunto(s)
Alergia e Inmunología , Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Biología Sintética , Linfocitos T/inmunología , Animales , Ingeniería Genética , Humanos , Activación de Linfocitos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/genética , Linfocitos T/trasplante
3.
Cell ; 187(11): 2785-2800.e16, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657604

RESUMEN

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.


Asunto(s)
Muerte Celular , Humanos , Apoptosis , Caspasas/metabolismo , Células HEK293 , Proteolisis , Piroptosis/efectos de los fármacos , Biología Sintética/métodos , Células Cultivadas
4.
Cell ; 187(2): 345-359.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38181787

RESUMEN

Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.


Asunto(s)
Proteínas Bacterianas , Células Eucariotas , Transducción de Señal , Animales , Mamíferos , Biología Sintética/métodos , Células Eucariotas/metabolismo
5.
Cell ; 187(4): 931-944.e12, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320549

RESUMEN

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.


Asunto(s)
Escherichia coli , Biología Sintética , Diferenciación Celular , Escherichia coli/citología , Escherichia coli/genética , Integrasas/metabolismo , Biología Sintética/métodos , Aptitud Genética , Farmacorresistencia Bacteriana
6.
Cell ; 187(5): 1278-1295.e20, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38387457

RESUMEN

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.


Asunto(s)
Ingeniería Metabólica , Linfocitos T , Humanos , Perfilación de la Expresión Génica , Ingeniería Metabólica/métodos , ARN , Transcriptoma
7.
Cell ; 187(18): 5064-5080.e14, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39089254

RESUMEN

So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.


Asunto(s)
Redes Reguladoras de Genes , Humanos , Lógica , Biología Sintética/métodos , Ingeniería Genética/métodos , Biología Computacional/métodos , Animales
8.
Cell ; 186(21): 4710-4727.e35, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774705

RESUMEN

Polarized cells rely on a polarized cytoskeleton to function. Yet, how cortical polarity cues induce cytoskeleton polarization remains elusive. Here, we capitalized on recently established designed 2D protein arrays to ectopically engineer cortical polarity of virtually any protein of interest during mitosis in various cell types. This enables direct manipulation of polarity signaling and the identification of the cortical cues sufficient for cytoskeleton polarization. Using this assay, we dissected the logic of the Par complex pathway, a key regulator of cytoskeleton polarity during asymmetric cell division. We show that cortical clustering of any Par complex subunit is sufficient to trigger complex assembly and that the primary kinetic barrier to complex assembly is the relief of Par6 autoinhibition. Further, we found that inducing cortical Par complex polarity induces two hallmarks of asymmetric cell division in unpolarized mammalian cells: spindle orientation, occurring via Par3, and central spindle asymmetry, depending on aPKC activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Polaridad Celular , Técnicas Citológicas , Mitosis , Animales , Citoesqueleto/metabolismo , Mamíferos/metabolismo , Microtúbulos/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
9.
Cell ; 186(3): 469-478, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657442

RESUMEN

The current food production system is negatively impacting planetary and human health. A transition to a sustainable and fair food system is urgently needed. Microorganisms are likely enablers of this process, as they can produce delicious and healthy microbial foods with low environmental footprints. We review traditional and current approaches to microbial foods, such as fermented foods, microbial biomass, and food ingredients derived from microbial fermentations. We discuss how future advances in science-driven fermentation, synthetic biology, and sustainable feedstocks enable a new generation of microbial foods, potentially impacting the sustainability, resilience, and health effects of our food system.


Asunto(s)
Alimentos Fermentados , Microbiología de Alimentos , Humanos , Fermentación , Alimentos , Crecimiento Sostenible , Conservación de los Recursos Naturales
10.
Cell ; 186(18): 3810-3825.e18, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37552983

RESUMEN

A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Factores de Transcripción/genética , Saccharomyces cerevisiae/genética , Genoma
11.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
12.
Cell ; 185(12): 2086-2102.e22, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561685

RESUMEN

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.


Asunto(s)
Antivirales , Regulación Viral de la Expresión Génica/efectos de los fármacos , Animales , Antivirales/farmacología , Farmacorresistencia Viral , Redes Reguladoras de Genes/efectos de los fármacos , Ratones , SARS-CoV-2/efectos de los fármacos , Replicación Viral
13.
Cell ; 185(8): 1431-1443.e16, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35427499

RESUMEN

Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Receptores Artificiales , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores Artificiales/genética , Biología Sintética , Linfocitos T
14.
Cell ; 185(6): 967-979.e12, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35235768

RESUMEN

In multicellular organisms, cells actively sense and control their own population density. Synthetic mammalian quorum-sensing circuits could provide insight into principles of population control and extend cell therapies. However, a key challenge is reducing their inherent sensitivity to "cheater" mutations that evade control. Here, we repurposed the plant hormone auxin to enable orthogonal mammalian cell-cell communication and quorum sensing. We designed a paradoxical population control circuit, termed "Paradaux," in which auxin stimulates and inhibits net cell growth at different concentrations. This circuit limited population size over extended timescales of up to 42 days of continuous culture. By contrast, when operating in a non-paradoxical regime, population control became more susceptible to mutational escape. These results establish auxin as a versatile "private" communication system and demonstrate that paradoxical circuit architectures can provide robust population control.


Asunto(s)
Comunicación Celular , Transducción de Señal , Animales , Recuento de Células , Ingeniería Celular , Ácidos Indolacéticos , Mamíferos , Percepción de Quorum , Biología Sintética/métodos
15.
Cell ; 185(9): 1487-1505.e14, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35366417

RESUMEN

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.


Asunto(s)
Vías Biosintéticas , Interacciones Microbiota-Huesped , Microbiota , Biología Sintética/métodos , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Ingeniería Genética , Humanos , Metabolómica
16.
Cell ; 185(20): 3823-3837.e23, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179672

RESUMEN

Biochemical processes often require spatial regulation and specific microenvironments. The general lack of organelles in bacteria limits the potential of bioengineering complex intracellular reactions. Here, we demonstrate synthetic membraneless organelles in Escherichia coli termed transcriptionally engineered addressable RNA solvent droplets (TEARS). TEARS are assembled from RNA-binding protein recruiting domains fused to poly-CAG repeats that spontaneously drive liquid-liquid phase separation from the bulk cytoplasm. Targeting TEARS with fluorescent proteins revealed multilayered structures with composition and reaction robustness governed by non-equilibrium dynamics. We show that TEARS provide organelle-like bioprocess isolation for sequestering biochemical pathways, controlling metabolic branch points, buffering mRNA translation rates, and scaffolding protein-protein interactions. We anticipate TEARS to be a simple and versatile tool for spatially controlling E. coli biochemistry. Particularly, the modular design of TEARS enables applications without expression fine-tuning, simplifying the design-build-test cycle of bioengineering.


Asunto(s)
Escherichia coli , Orgánulos , Escherichia coli/genética , Orgánulos/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Solventes/análisis , Solventes/metabolismo
17.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35931082

RESUMEN

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiología , Ratones , Transgenes
18.
Cell ; 185(19): 3551-3567.e39, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055250

RESUMEN

Interactions between cells are indispensable for signaling and creating structure. The ability to direct precise cell-cell interactions would be powerful for engineering tissues, understanding signaling pathways, and directing immune cell targeting. In humans, intercellular interactions are mediated by cell adhesion molecules (CAMs). However, endogenous CAMs are natively expressed by many cells and tend to have cross-reactivity, making them unsuitable for programming specific interactions. Here, we showcase "helixCAM," a platform for engineering synthetic CAMs by presenting coiled-coil peptides on the cell surface. helixCAMs were able to create specific cell-cell interactions and direct patterned aggregate formation in bacteria and human cells. Based on coiled-coil interaction principles, we built a set of rationally designed helixCAM libraries, which led to the discovery of additional high-performance helixCAM pairs. We applied this helixCAM toolkit for various multicellular engineering applications, such as spherical layering, adherent cell targeting, and surface patterning.


Asunto(s)
Bacterias , Péptidos , Humanos , Péptidos/química
19.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483375

RESUMEN

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptido Hidrolasas , Receptores de Antígenos de Linfocitos T , Linfocitos T/patología
20.
Annu Rev Biochem ; 90: 221-244, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33784178

RESUMEN

In 1961, Jacob and Monod proposed the operon model of gene regulation. At the model's core was the modular assembly of regulators, operators, and structural genes. To illustrate the composability of these elements, Jacob and Monod linked phenotypic diversity to the architectures of regulatory circuits. In this review, we examine how the circuit blueprints imagined by Jacob and Monod laid the foundation for the first synthetic gene networks that launched the field of synthetic biology in 2000. We discuss the influences of the operon model and its broader theoretical framework on the first generation of synthetic biological circuits, which were predominantly transcriptional and posttranscriptional circuits. We also describe how recent advances in molecular biology beyond the operon model-namely, programmable DNA- and RNA-binding molecules as well as models of epigenetic and posttranslational regulation-are expanding the synthetic biology toolkit and enabling the design of more complex biological circuits.


Asunto(s)
Epigenómica/métodos , Operón , Proteínas/genética , Biología Sintética/métodos , Sistemas CRISPR-Cas , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Biología Molecular/métodos , Proteínas/metabolismo , ARN Mensajero/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA