Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38815737

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.

2.
Ecotoxicol Environ Saf ; 270: 115844, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134641

RESUMEN

T-2 toxin is a trichothecene mycotoxin of significant danger to humans and animals. Its impact on reproductive toxicity is attributed to oxidative stress, which ultimately leads to cell death. Ferroptosis is a programmed cell death that characterized by lipid peroxidation. This study aimed to investigate the toxic effects of T-2 toxin on mouse testis and the potential mechanism of T-2 toxin-induced ferroptosis. T-2 toxin significantly altered the morphology of the testis and decreased testosterone level, sperm concentration, and increased sperm malformation rate, as well as induced oxidative damage with reactive oxygen species and malondialdehyde accumulated, and activity of superoxide dismutase, glutathione peroxidase decreased. Additionally, T-2 toxin induced ferroptosis by accumulating iron ions, increasing prostaglandin endoperoxide synthase 2, downregulating glutathione peroxidase 4 and ferritin heavy chain 1, as well as manifesting ferroptotic morphological alterations, ultimately leading to testicular impairment. Administration of ferroptosis inhibitor liproxstatin-1 or antioxidant resveratrol effectively mitigated the T-2 toxin-induced ferroptosis and testicular injury. These findings provided novel insights into the fundamental mechanism of T-2 toxin-induced cell death and furnished further proof of the potential therapeutic effect in addressing T-2 toxin-induced testicular impairment.


Asunto(s)
Ferroptosis , Toxina T-2 , Ratones , Humanos , Animales , Masculino , Testículo , Toxina T-2/toxicidad , Semen , Estrés Oxidativo
3.
Ecotoxicol Environ Saf ; 283: 116787, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067079

RESUMEN

T-2 toxin, a mycotoxin found in foods and feeds, poses a threat to female reproductive health in both humans and animals. LncRNA CUFF.253988.1 (CUFF.253988.1), highly expressed in pigs, has an undisclosed regulatory role. This study aimed to establish a model of T-2 toxin-induced ovarian injury in sows, both in vivo and in vitro, and to explore the regulatory role and potential mechanisms of CUFF.253988.1. The results showed that feeding T-2 toxin-contaminated feed (1 mg/kg) induced ovarian follicle atresia and mitochondrial structural damage, accompanied by a significant upregulation of CUFF.253988.1 expression in the ovaries. Additionally, T-2 toxin inhibited the SIRT3/PGC1-α pathway associated with mitochondrial function. Moreover, T-2 toxin induced cell apoptosis by upregulating the expression of Cyt c, Bax, cleaved-caspase-9, and cleaved-caspase-3 proteins. In T-2 toxin-induced injury to the ovarian granulosa AVG-16 cells at concentrations of 10, 40 and 160 nM, not only were the previously mentioned effects observed, but also a decrease in mitochondrial membrane potential, ATP content, and an elevation in ROS levels. However, downregulating CUFF.253988.1 reversed T-2 toxin's inhibition of the SIRT3/PGC1-α pathway, alleviating mitochondrial dysfunction and reducing cell apoptosis. Notably, this may be attributed to the inhibition of T-2 toxin-induced enrichment of CUFF.253988.1 in mitochondria. In conclusion, CUFF.253988.1 plays a pivotal role in T-2 toxin-induced ovarian damage, operating through the inhibition of the SIRT3/PGC1-α pathway and promotion of cell apoptosis.

4.
Ecotoxicol Environ Saf ; 284: 116909, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178761

RESUMEN

T-2 toxin, a trichothecene mycotoxin, is an important environmental pollutant that poses a threat globally to the health of humans and animals. It has been found to induce nephrotoxicity; however, the precise molecular mechanism involved remains unclear. In this study, mice were administered at a single dose of 2 mg/kg body weight T-2 toxin intraperitoneally, and kidney function and ultrastructural observations were assessed after 1 d, 3 d, and 7 d. Histopathological findings revealed that exposure to T-2 toxin caused noticeable tubular degeneration, necrosis and epithelial cell shedding in mouse kidneys. Transmission electron microscopy indicated that exposure to T-2 toxin caused mitochondrial swelling and vacuolization. Transcriptomic data revealed significant differences in the expression of 1122, 58, and 391 genes in kidney tissues 1 d, 3 d, or 7 d after T-2 toxin exposure, respectively. Moreover, after 1 d, the downregulated differentially expressed genes (DEGs) were found to be involved in the cell cycle, p53 signaling, and cellular senescence pathways, while the upregulated DEGs were found to be associated with the ribosomal pathway. Temporal changes in gene expression patterns (i.e., after 3 d and 7 d) and disturbances in cellular metabolism during the recovery period (7 d) were detected in mouse kidneys after exposure to T-2 toxin. In conclusion, this study is the first to provide a comprehensive comparative transcriptomic analysis of T-2 toxin exposure-induced nephrotoxicity-related gene regulation at different time points and to investigate the mechanism underlying the nephrotoxicity of T-2 toxin at the mRNA expression level.

5.
Ecotoxicol Environ Saf ; 281: 116612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896898

RESUMEN

T-2 toxin is one of trichothecene mycotoxins, which can impair appetite and decrease food intake. However, the specific mechanisms for T-2 toxin-induced anorexia are not fully clarified. Multiple research results had shown that gut microbiota have a significant effect on appetite regulation. Hence, this study purposed to explore the potential interactions of the gut microbiota and appetite regulate factors in anorexia induced by T-2 toxin. The study divided the mice into control group (CG, 0 mg/kg BW T-2 toxin) and T-2 toxin-treated group (TG, 1 mg/kg BW T-2 toxin), which oral gavage for 4 weeks, to construct a subacute T-2 toxin poisoning mouse model. This data proved that T-2 toxin was able to induce an anorexia in mice by increased the contents of gastrointestinal hormones (CCK, GIP, GLP-1 and PYY), neurotransmitters (5-HT and SP), as well as pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in serum of mice. T-2 toxin disturbed the composition of gut microbiota, especially, Faecalibaculum and Allobaculum, which was positively correlated with CCK, GLP-1, 5-HT, IL-1ß, IL-6 and TNF-α, which played a certain role in regulating host appetite. In conclusion, gut microbiota changes (especially an increase in the abundance of Faecalibaculum and Allobaculum) promote the upregulation of gastrointestinal hormones, neurotransmitters, and pro-inflammatory cytokines, which may be a potential mechanism of T-2 toxin-induced anorexia.


Asunto(s)
Anorexia , Microbioma Gastrointestinal , Toxina T-2 , Animales , Toxina T-2/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Anorexia/inducido químicamente , Ratones , Citocinas/metabolismo , Hormonas Gastrointestinales/metabolismo , Masculino
6.
Ecotoxicol Environ Saf ; 279: 116503, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810288

RESUMEN

Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Condrocitos , Enfermedad de Kashin-Beck , Selenio , Toxina T-2 , Serina-Treonina Quinasas TOR , Toxina T-2/toxicidad , Toxina T-2/análogos & derivados , Autofagia/efectos de los fármacos , Enfermedad de Kashin-Beck/patología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Masculino , Condrocitos/efectos de los fármacos , Condrocitos/patología , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Femenino , Persona de Mediana Edad , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Adulto , Péptidos y Proteínas de Señalización Intracelular
7.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029582

RESUMEN

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Asunto(s)
Enfermedades Renales , Selenio , Toxina T-2 , Animales , Ratas , Receptor alfa de Estrógeno/metabolismo , Fibrosis , Enfermedades Renales/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Selenio/farmacología , Selenio/toxicidad , Transducción de Señal , Toxina T-2/toxicidad
8.
Int J Biometeorol ; 68(7): 1387-1396, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38607562

RESUMEN

The present study aimed to find whether low doses of mixed mycotoxins would affect egg quality in laying hens, and to explore the oxidative stress induced liver damage through endoplasmic reticulum during summer stress. A total of 96 Jinghong laying hens, 36 wks of age, were divided into four treatments, with eight repetitions per treatment and three hens per repetition. All the hens were raised in summer (average temperature: 31.3 ± 0.5℃; average humidity: 85.5 ± 0.2%) for 28d. One treatment was fed a basal diet as control (CON), and the other three treatments were fed the same diets containing 3.0 mg/kg deoxynivalenol (DON), 0.5 mg/kg T-2 toxin (T-2), and 1.5 mg/kg DON + 0.25 mg/kg T-2 toxin (Mix). Albumen height and Haugh unit were decreased (P < 0.05) in the Mix group on day 14 and 28. The activity of total antioxidant capacity, glutathione peroxidase, catalase, and superoxide dismutase were decreased (P < 0.05) in the DON, T-2, and Mix groups. The alkaline phosphatase level in DON, T-2, and Mix groups was significantly increased (P < 0.05). The level of interleukin-1ß, interferon-γ, and tumor necrosis factor-α in the Mix group were higher (P < 0.05) than CON, DON, and T-2 groups. Mix group upregulated the mRNA expressions of protein kinase RNA-like ER kinase, activating transcription factor4, IL-1ß, nuclear factor-κ-gene binding, and nuclear respiratory factor 2 in the liver (P < 0.05). The results showed that low doses of DON and T-2 toxin could cause oxidative stress in the liver, but DON and T-2 toxin have a cumulative effect on virulence, which can reduce egg quality and cause endoplasmic reticulum stress in the liver.


Asunto(s)
Pollos , Estrés del Retículo Endoplásmico , Hígado , Toxina T-2 , Tricotecenos , Animales , Toxina T-2/toxicidad , Tricotecenos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Huevos/análisis , Estaciones del Año , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Citocinas/metabolismo , Citocinas/genética
9.
Environ Toxicol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225115

RESUMEN

T-2 toxin is a trichothecene mycotoxin and is considered as an extremely inevitable pollutant with potent hepatotoxicity. However, the approach to alleviation of T-2 toxin-triggered hepatotoxicity has been recognized as a serious challenge. Resveratrol (Res) is a polyphenol natural product isolated from various plant species, but its protective effect against T-2 toxin hepatotoxicity and detailed mechanism remains obscure. In the present study, the effect of Res against the hepatotoxicity was evaluated, and the underlying mechanisms were further revealed in mice. Functionally, Res inhibited liver injury, oxidative damage, and mitochondrial dysfunction induced by T-2 toxin. Mechanistically, Res modulated Nrf2-mediated antioxidant pathway and glutathione synthesis inhibition. Collectively, our findings first showed beyond doubt that Res ameliorated T-2 toxin-triggered liver injury by regulating Nrf2 pathways in mice.

10.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255951

RESUMEN

T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.


Asunto(s)
Condrocitos , Toxina T-2 , Tricotecenos , Humanos , Toxina T-2/toxicidad , Proteínas Señalizadoras YAP , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales
11.
Vet Clin North Am Equine Pract ; 40(1): 83-94, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38061965

RESUMEN

The main mycotoxins involved in adverse equine health issues are aflatoxins, fumonisins, trichothecenes, and probably ergovaline (fescue grass endophyte toxicosis). Most exposures are through contaminated grains and grain byproducts, although grasses and hays can contain mycotoxins. Clinical signs are often nonspecific and include feed refusal, colic, diarrhea, and liver damage but can be dramatic with neurologic signs associated with equine leukoencephalomalacia and tremorgens. Specific antidotes for mycotoxicosis are rare, and treatment involves stopping the use of contaminated feed, switching to a "clean" feed source, and providing supportive care.


Asunto(s)
Enfermedades de los Caballos , Micotoxinas , Tricotecenos , Zearalenona , Animales , Caballos , Micotoxinas/toxicidad , Micotoxinas/análisis , Zearalenona/análisis , Contaminación de Alimentos/análisis , Enfermedades de los Caballos/inducido químicamente , Enfermedades de los Caballos/terapia , Tricotecenos/análisis , Poaceae
12.
Cell Biol Toxicol ; 39(1): 201-216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34581912

RESUMEN

Alimentary toxic aleukia (ATA) is correlated with consuming grains contaminated by Fusarium species, particularly T-2 toxin, which causes serious hurt to human and animal health, chiefly in disorders of the haematopoietic system. However, the mechanism of haematopoietic dysfunction induced by T-2 toxin and the possible target pathway for the treatment of T-2 toxin-induced haematopoietic disorder of ATA remains unclear. In this study, genomes and proteomics were used for the first time to investigate the key differential genes and proteins that inhibit erythroid differentiation of K562 cells caused by T-2 toxin, and it was found that heat shock protein 27 (HSP27) and membrane-spanning 4-domains, subfamily A, member 3 (MS4A3) may play an important role in erythroid differentiation. Meanwhile, MS4A3 interference can inhibit the occurrence of erythroid differentiation of K562 cells and promote the phosphorylation of HSP27. Moreover, the binding of HSP27 to MS4A3 in natural state can activate the phosphorylation site of HSP27 (Ser-83), while T-2 toxin can abolish the activation of phosphorylation site by inhibiting the expression of MS4A3. These findings for the first time demonstrated that the MS4A3-HSP27 pathway may function an efficient therapeutic target pathway for treating T-2 toxin elicited haematopoietic disorders of ATA.


Asunto(s)
Proteínas de Choque Térmico HSP27 , Toxina T-2 , Animales , Humanos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Toxina T-2/toxicidad , Fosforilación , Diferenciación Celular , Células K562 , Proteínas de la Membrana/metabolismo , Proteínas de Ciclo Celular/metabolismo
13.
Environ Res ; 228: 115838, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024032

RESUMEN

According to the World Health Organization and the Food and Agricultural Organization of the United Nations, T-2 is one of the most harmful food-toxic chemicals, penetrates intact skin. The current study examined the protective benefits of menthol topical treatment on T-2 toxin-induced cutaneous toxicity in mice. Lesions were observed on the skin of the T-2 toxin-treated groups at 72 and 120 h. The T-2 toxin (2.97 mg/kg/bw)-treated group developed skin lesions, skin inflammation, erythema, and necrosis of skin tissue in contrast to the control group. Our findings reveal that topical application of 0.25% and 0.5% MN treated groups resulted in no erythema or inflammation, and normal skin was observed with growing hairs. The 0.5% MN administered group demonstrated an 80% blister and erythema healing effect in in vitro tests. In addition, MN dose-dependently suppressed ROS and lipid peroxidation mediated by the T-2 toxin up to 120%. Histology discoveries and the immunoblotting investigations with the downregulation of i-NOS gene expression confirmed the validity of menthol activity. Further molecular docking experiments of menthol against the i-NOS protein demonstrated stable binding efficacy with conventional hydrogen bond interactions, indicating compelling evidence of menthol's anti-inflammatory effects on the T-2 toxin-induced skin inflammation.


Asunto(s)
Mentol , Toxina T-2 , Ratones , Animales , Mentol/toxicidad , Toxina T-2/toxicidad , Simulación del Acoplamiento Molecular , Piel , Inflamación/inducido químicamente , Inflamación/patología , Alérgenos
14.
Arch Toxicol ; 97(3): 805-817, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695871

RESUMEN

T-2 toxin is a worldwide problem for feed and food safety, leading to livestock and human health risks. The objective of this study was to explore the mechanism of T-2 toxin-induced small intestine injury in broilers by integrating the advanced microbiomic, metabolomic and transcriptomic technologies. Four groups of 1-day-old male broilers (n = 4 cages/group, 6 birds/cage) were fed a control diet and control diet supplemented with T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, for 2 weeks. Compared with the control, dietary T-2 toxin reduced feed intake, body weight gain, feed conversion ratio, and the apparent metabolic rates and induced histopathological lesions in the small intestine to varying degrees by different doses. Furthermore, the T-2 toxin decreased the activities of glutathione peroxidase, thioredoxin reductase and total antioxidant capacity but increased the concentrations of protein carbonyl and malondialdehyde in the duodenum in a dose-dependent manner. Moreover, the integrated microbiomic, metabolomic and transcriptomic analysis results revealed that the microbes, metabolites, and transcripts were primarily involved in the regulation of nucleotide and glycerophospholipid metabolism, redox homeostasis, inflammation, and apoptosis were related to the T-2 toxin-induced intestinal damage. In summary, the present study systematically elucidated the intestinal toxic mechanisms of T-2 toxin, which provides novel ideas to develop a detoxification strategy for T-2 toxin in animals.


Asunto(s)
Pollos , Toxina T-2 , Humanos , Animales , Masculino , Pollos/metabolismo , Toxina T-2/toxicidad , Suplementos Dietéticos , Dieta , Antioxidantes/metabolismo , Oxidación-Reducción , Apoptosis , Inflamación , Homeostasis , Alimentación Animal/análisis
15.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105199

RESUMEN

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Asunto(s)
Biosíntesis de Proteínas , Gránulos de Estrés , ARN Mensajero/metabolismo , Gránulos Citoplasmáticos , Ribosomas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas de Unión al ARN/metabolismo
16.
Ecotoxicol Environ Saf ; 263: 115247, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453270

RESUMEN

The most prevalent contaminated mycotoxin in feed and grain is T-2 toxin. The T-2 toxin's primary action target is the gut because it is the main organ of absorption. T-2 toxin can cause intestinal damage, but, few molecular mechanisms have been elucidated. It is important to discover the key pathways by which T-2 toxin causes enterotoxicity. In this research, IPEC-J2 cells are used as a cell model to investigate the function of the MAPK signaling pathway in T-2 toxin-induced intestinal epithelial cell damage. Throughout this research, T-2 toxin results in functional impairment in IPEC-J2 cells by reducing the TJ proteins Claudin, Occludin-1, ZO-1, N-cadherin, and CX-43 expression. T-2 toxin significantly reduced the survival of IPEC-J2 cells and increased LDH release in a dose-dependent way. T-2 toxin induced IPEC-J2 cell oxidative stress by raising ROS and MDA content, and mitochondrial damage was indicated by a decline in MMP and an increase in the opening degree of MPTP. T-2 toxin upregulated the expression of ERK, P38 and JNK, which triggered the MAPK signaling pathway. In addition, T-2 toxin caused IPEC-J2 cell inflammation responses reflected by increased the levels of inflammation-related factors IL-8, p65, P-p65 and IL-6, and down-regulated IL-10 expression level. Inhibition JNK molecule can ease IPEC-J2 cell functional impairment and inflammatory response. In conclusion, as a consequence of the T-2 toxin activating the JNK molecule, oxidative stress and mitochondrial damage are induced, which impair cellular inflammation.


Asunto(s)
Toxina T-2 , Humanos , Toxina T-2/toxicidad , Intestinos , Estrés Oxidativo , Transducción de Señal , Células Epiteliales , Inflamación/inducido químicamente
17.
Ecotoxicol Environ Saf ; 262: 115323, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37541021

RESUMEN

T-2 mycotoxin, a type A trichothecene toxin that, specifically, causes male and female reproductive toxicity. We evaluated T-2 toxin toxicity in testes from neonatal testes after in vitro tissue cultured. Additionally, current study focuses on the molecular mechanism of toxicity and germ cell damage in GC-1 spermatogonial cells. Mouse testicular fragments were subjected to T-2 toxin (0-20 nM) during days 5 of in vitro culture. Testicular germ cell number were reduced and downregulated the expression of corresponding markers depending on the exposure concentration of T-2 toxin; however, Sertoli cell markers and steroidogenic enzyme expression increased when treated with 20 nM T-2 toxin. The cell viability decreased, apoptosis increased, and pro-apoptotic protein expression increased in 5-20 nM T-2 toxin-exposed spermatogonia. Moreover, T-2 toxin generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, indicating that activation of p38 MAPK signaling triggered by ROS is involved in the apoptotic molecular mechanism of T-2 toxin. T-2 toxin induced the phosphorylation of ERK1/2, c-Jun, JNK/SAPK, p38, and p53, and the subsequent inhibition of AKT phosphorylation. The upregulation of genes related to apoptosis and MAPK/JNK signaling was consistently observed in cells exposed to T-2 toxin. These results indicate that T-2 toxin triggers apoptotic cell death in germ cells through the triggering of ROS-mediated JNK/p38-MAPK signaling pathways.

18.
Ecotoxicol Environ Saf ; 259: 115028, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216862

RESUMEN

The T-2 toxin and deoxynivalenol (DON), as the most concerned members of trichothecenes, induce cellular stress responses and various toxic effects. Stress granules (SGs) are rapidly formed in response to stress and play an important role in the cellular stress response. However, it is not known whether T-2 toxin and DON induce SG formation. In this study, we found that T-2 toxin induces SG formation, while DON surprisingly suppresses SG formation. Meanwhile, we discovered that SIRT1 co-localized with SGs and regulated SG formation by controlling the acetylation level of the SG nucleator G3BP1. Upon T-2 toxin, the acetylation level of G3BP1 increased, but the opposite change was observed upon DON. Importantly, T-2 toxin and DON affect the activity of SIRT1 via changing NAD+ level in a different manner, though the mechanism remains to be clarified. These findings suggest that the distinct effects of T-2 toxin and DON on SG formation are caused by changes in the activity of SIRT1. Furthermore, we found that SGs increase the cell toxicity of T-2 toxin and DON. In conclusion, our results reveal the molecular regulation mechanism of TRIs on SG formation and provide novel insights into the toxicological mechanisms of TRIs.


Asunto(s)
Toxina T-2 , Toxina T-2/toxicidad , ADN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , ARN Helicasas/metabolismo , Sirtuina 1 , Gránulos de Estrés , Proteínas de Unión a Poli-ADP-Ribosa
19.
Ecotoxicol Environ Saf ; 249: 114397, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527851

RESUMEN

Long-term feed route exposure to T-2 toxin was proved to elicit growth retarding effects and induction of oxidative stress and apoptosis in Chinese mitten crab (Eriocheir sinensis). However, no study with a holistic perspective has been conducted to date to further describe the in-depth toxicological mechanism of T-2 toxin in E.sinensis. In this study, an RNA-Sequencing (RNA-seq) was used in this study to investigate the effects of feed supplementation with 0 mg/kg and 4 mg/kg T-2 toxin on the hepatopancreas transcriptome of E.sinensis and establish a hepatopancreas transcriptome library of T-2 toxin chronically exposed crabs after five weeks, where 14 differentially expressed genes (DEGs) were screened out across antioxidant, apoptosis, autophagy, glucolipid metabolism and protein synthesis. The actual expression of all the DEGs (Caspase, ATG4, PERK, ACSL, CAT, BIRC2, HADHA, HADHB, ACOX, PFK, eEFe1, eIF4ɑ, RPL13Ae) was also analyzed by real-time quantitative PCR (RT-qPCR). It was demonstrated that long-term intake of large amounts of T-2 toxin could impair antioxidant enzyme activity, promote apoptosis and protective autophagy, disrupt lipid metabolism and inhibit protein synthesis in the hepatopancreas of E.sinensis. In conclusion, this study explored the toxicity mechanism of T-2 toxin on the hepatopancreas of E.sinensis at the mRNA level, which lays the foundation for further investigation of the molecular toxicity mechanism of T-2 toxin in aquatic crustaceans.


Asunto(s)
Braquiuros , Toxina T-2 , Animales , Transcriptoma , Toxina T-2/toxicidad , Antioxidantes/metabolismo , Hepatopáncreas/metabolismo , Apoptosis , Braquiuros/genética
20.
Ecotoxicol Environ Saf ; 253: 114695, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857919

RESUMEN

T-2 toxin is an unavoidable food and feed contaminant that seriously threatens human and animal health. Exposure to T-2 toxin can cause testosterone synthesis disorder in male animals, but the molecular mechanism is still not completely clear. The MAPK pathway participates in the regulation of testosterone synthesis by Leydig cells, but it is unclear whether the MAPK pathway participates in T-2 toxin-induced testosterone synthesis disorders. In this research, testosterone synthesis capacity, testosterone synthase expression and MAPK pathway activation were examined in male mice and TM3 cells exposed to T-2 toxin. The results showed that T-2 toxin exposure decreased testicular volume and caused pathological changes in the microstructure and ultrastructure of testicular Leydig cells. T-2 toxin exposure also decreased testicular testosterone content and the protein expression of testosterone synthase. In vitro, T-2 toxin inhibited cell viability and decreased the expression of testosterone synthase in TM3 cells, and it decreased the testosterone contents in cell culture supernatants. Moreover, T-2 toxin activated the MAPK pathway by increasing the expression of p38, JNK and ERK as well as the expression of p-p38, p-JNK and p-ERK in testis and TM3 cells. The p38 molecular inhibitor (SB203580) significantly alleviated the T-2 toxin-induced decrease in testosterone synthase expression in TM3 cells and the T-2 toxin-induced reduction in testosterone content in TM3 cell culture supernatants. In summary, p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder.


Asunto(s)
Células Intersticiales del Testículo , Toxina T-2 , Masculino , Ratones , Humanos , Animales , Células Intersticiales del Testículo/metabolismo , Toxina T-2/toxicidad , Testosterona/metabolismo , Testículo/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA