Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
RNA ; 29(9): 1411-1422, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37311599

RESUMEN

k-Junctions are elaborated forms of kink turns with an additional helix on the nonbulged strand, thus forming a three-way helical junction. Two were originally identified in the structures of Arabidopsis and Escherichia coli thiamine pyrophosphate (TPP) riboswitches, and another called DUF-3268 was tentatively identified from sequence information. In this work we show that the Arabidopsis and E. coli riboswitch k-junctions fold in response to the addition of magnesium or sodium ions, and that atomic mutations that should disrupt key hydrogen bonding interactions greatly impair folding. Using X-ray crystallography, we have determined the structure of the DUF-3268 RNA and thus confirmed that it is a k-junction. It also folds upon the addition of metal ions, though requiring a 40-fold lower concentration of either divalent or monovalent ions. The key difference between the DUF-3268 and riboswitch k-junctions is the lack of nucleotides inserted between G1b and A2b in the former. We show that this insertion is primarily responsible for the difference in folding properties. Finally, we show that the DUF-3268 can functionally substitute for the k-junction in the E. coli TPP riboswitch such that the chimera can bind the TPP ligand, although less avidly.


Asunto(s)
Arabidopsis , Riboswitch , Riboswitch/genética , Escherichia coli/metabolismo , Arabidopsis/genética , Pliegue del ARN , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Iones , Conformación de Ácido Nucleico
2.
RNA ; 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863818

RESUMEN

Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multi-step TPP binding process involving multiple riboswitch configurational ensembles and that Mg2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg2+ ¬¬in the aptamer domain constituting this mechanism are unknown. Therefore, we integrated single-molecule multiparameter fluorescence and force spectroscopy with atomistic molecular dynamics simulations and found that conformational transitions within the aptamer domain's sensor helices associated with TPP and Mg2+ ligand binding occurred between at least five different ensembles on timescales ranging from µs to ms. These dynamics are orders of magnitude faster than the 10 second-timescale folding kinetics associated with expression-state switching in the switch sequence. Together, our results show that a TPP and Mg2+ dependent mechanism determines dynamic configurational state ensemble switching of the aptamer domain's sensor helices that regulates the stability of the switch helix, which ultimately may lead to the expression-inhibiting state of the riboswitch. Additionally, we propose that two pathways exist for ligand recognition and that this mechanism underlies a kinetic rheostat-like behavior of the Arabidopsis thaliana TPP riboswitch.

3.
New Phytol ; 235(5): 1853-1867, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653609

RESUMEN

Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.


Asunto(s)
Diatomeas , Riboswitch , Diatomeas/genética , Diatomeas/metabolismo , Hongos/genética , Riboswitch/genética , Tiamina/química , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
4.
Mol Phylogenet Evol ; 169: 107409, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063674

RESUMEN

Bacteria, especially gut bacteria play important roles in human health and diseases. The classification of many bacterial genera by the 16S ribosomal RNA (rRNA) has failed due to its low inter-species resolution. Given the wide distribution of riboswitches in bacteria, they may help 16S rRNA differentiate closely related species. We found that among 28 groups of species that could not be distinguished by 16S rRNA, eight of them could be separated by the TPP riboswitch and other riboswitches. Moreover, the species in the 16S rRNA database and these riboswitch databases overlap, therefore, using riboswitch databases can help 16S rRNA better identify species. In addition, we used Klenow DNA polymerase and a pair of short primers to facilitate the library construction of TPP riboswitches for sequencing. The sequencing results showed that the TPP riboswitch could detect the major phyla similar to those detected by 16S rRNA. Therefore, the TPP riboswitch and other riboswitch classes could potentially be applied to gut bacteria classification.


Asunto(s)
Microbioma Gastrointestinal , Riboswitch , Bacterias/genética , Microbioma Gastrointestinal/genética , Humanos , Filogenia , ARN Ribosómico 16S/genética , Riboswitch/genética
5.
RNA Biol ; 19(1): 90-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34989318

RESUMEN

Riboswitches are RNA sensors affecting post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch plays a crucial role in regulating genes involved in synthesizing or transporting thiamine and phosphorylated derivatives in bacteria, archaea, plants, and fungi. Although TPP riboswitch is reasonably well known in bacteria, there is a gap in the knowledge of the fungal TPP riboswitches structure and dynamics, involving mainly sequence variation and TPP interaction with the aptamers. On the other hand, the increase of fungal infections and antifungal resistance raises the need for new antifungal therapies. In this work, we used computational approaches to build three-dimensional models for the three TPP riboswitches identified in Aspergillus oryzae, in which we studied their structure, dynamics, and binding free energy change (ΔGbind) with TPP. Interaction patterns between the TPP and the surrounding nucleotides were conserved among the three models, evidencing high structural conservation. Furthermore, we show that the TPP riboswitch from the A. oryzae NMT1 gene behaves similarly to the E. coli thiA gene concerning the ΔGbind. In contrast, mutations in the fungal TPP riboswitches from THI4 and the nucleoside transporter genes led to structural differences, affecting the binding-site volume, hydrogen bond occupancy, and ΔGbind. Besides, the number of water molecules surrounding TPP influenced the ΔGbind considerably. Notably, our ΔGbind estimation agreed with previous experimental data, reinforcing the relationship between sequence conservation and TPP interaction.


Asunto(s)
Aspergillus oryzae/genética , Biología Computacional , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Riboswitch , Escherichia coli/genética , Enlace de Hidrógeno , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN Bacteriano , Relación Estructura-Actividad , Termodinámica
6.
Methods Mol Biol ; 2568: 213-232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227571

RESUMEN

Conformational rearrangements are key to the function of riboswitches. These regulatory mRNA regions specifically bind to cellular metabolites using evolutionarily conserved sensing domains and modulate gene expression via adjacent downstream expression platforms, which carry gene expression signals. The regulation is achieved through the ligand-dependent formation of two alternative and mutually exclusive conformations involving the same RNA region. While X-ray crystallography cannot visualize dynamics of such dramatic conformational rearrangements, this method is pivotal to understand RNA-ligand interaction that stabilize the sensing domain and drive folding of the expression platform. X-ray crystallography can reveal local changes in RNA necessary for discriminating cognate and noncognate ligands. This chapter describes preparation of thiamine pyrophosphate riboswitch RNAs and its crystallization with different ligands, resulting in structures with local conformational changes in RNA. These structures can help to derive information on the dynamics of the RNA essential for specific binding to small molecules, with potential for using this information for developing designer riboswitch-ligand systems.


Asunto(s)
Riboswitch , Cristalografía por Rayos X , Ligandos , Conformación de Ácido Nucleico , ARN , Tiamina Pirofosfato/metabolismo
7.
FEBS Lett ; 595(22): 2816-2828, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644399

RESUMEN

The ThiM riboswitch from Escherichia coli is a typical mRNA device that modulates downstream gene expression by sensing TPP. The helix-based RNA folding theory is used to investigate its detailed regulatory behaviors in cells. This RNA molecule is transcriptionally trapped in a state with the unstructured SD sequence in the absence of TPP, which induces downstream gene expression. As a key step to turn on gene expression, formation of this trapped state (the genetic ON state) highly depends on the co-transcriptional folding of its wild-type sequence. Instead of stabilities of the genetic ON and OFF states, the transcription rate, pause, and ligand levels are combined to affect the ThiM riboswitch-mediated gene regulation, which is consistent with a kinetic control model.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Riboswitch , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Tiamina Pirofosfato/metabolismo
8.
FEBS Lett ; 594(4): 625-635, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31664711

RESUMEN

The expression of Neurospora crassa NMT1 involved in thiamine pyrophosphate (TPP) metabolism is regulated at the level of mRNA splicing by a TPP-sensing riboswitch within the precursor NMT1 mRNA. Here, using the systematic helix-based computational method, we investigated the regulation of this riboswitch. We find that the function of the riboswitch does not depend on the transcription process. Whether TPP is present or not, the riboswitch predominately folds into the ON state, while the OFF state aptamer structure does not appear during transcription. Since the transition from the ON state to the aptamer structure is extremely slow, TPP may interact with the RNA before full formation of the aptamer structure, promoting the switch flipping. The potential to fully form helix P0 of the ON state is necessary to restore ligand-dependent gene control by the riboswitch.


Asunto(s)
Metiltransferasas/genética , Neurospora crassa/genética , Riboswitch/genética , Tiamina Pirofosfato/metabolismo , Aptámeros de Nucleótidos/metabolismo , Neurospora crassa/enzimología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA