Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 155(Pt B): 45-51, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414720

RESUMEN

Thrombospondins (TSPs) have numerous different roles in cancer, regulating the behavior of cancer cells and non-neoplastic cells, and defining the responses of tumor cells to environmental changes, thorough their ability to orchestrate cellular and molecular interactions in the tumor microenvironment (TME). As a result of these activities, TSPs can also control drug delivery and activity, tumor response and resistance to therapies, with different outcomes depending on the nature of TSP-interacting cell types, receptors, and ligands, in a highly context-dependent manner. This review, focusing primarily on TSP-1, discusses the effects of TSPs on tumor response to chemotherapy, antiangiogenic, low-dose metronomic chemotherapy, immunotherapy, and radiotherapy, by analyzing TSP activity on different cell compartments - tumor cells, vascular endothelial cells and immune cells. We review evidence of the value of TSPs, specifically TSP-1 and TSP-2, as biomarkers of prognosis and tumor response to therapy. Finally, we examine possible approaches to develop TSP-based compounds as therapeutic tools to potentiate the efficacy of anticancer therapy.


Asunto(s)
Neoplasias , Trombospondina 1 , Humanos , Células Endoteliales/metabolismo , Trombospondinas/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
2.
J Biol Chem ; 300(8): 107516, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960036

RESUMEN

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Integrina beta3 , Trombospondina 1 , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/genética , Animales , Trombospondina 1/metabolismo , Trombospondina 1/genética , Humanos , Ratones , Integrina beta3/metabolismo , Integrina beta3/genética , Masculino , Ratones Noqueados , Túbulos Renales/metabolismo , Túbulos Renales/patología , Femenino , Adulto , Transducción de Señal , Línea Celular , Doxorrubicina/farmacología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética
3.
J Biol Chem ; 299(1): 102803, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529291

RESUMEN

Cellular Communication Network (CCN) proteins have multimodular structures important for their roles in cellular responses associated with organ development and tissue homeostasis. CCN2 has previously been reported to be secreted as a preproprotein that requires proteolytic activation to release its bioactive carboxyl-terminal fragment. Here, our goal was to resolve whether CCN5, a divergent member of the CCN family with converse functions relative to CCN2, releases the TSP1 homology domain as its bioactive signaling entity. The recombinant CCN5 or CCN3 TSP1 homology domains were produced in ExpiCHO-S or DG44 CHO cells as secretory fusion proteins appended to the carboxyl-terminal end of His-Halo-Sumo or amino-terminal end of human albumin and purified from the cell culture medium. We tested these fusion proteins in various phosphokinase signaling pathways or cell physiologic assays. Fusion proteins with the CCN5 TSP1 domain inhibited key signaling pathways previously reported to be stimulated by CCN2, irrespective of fusion partner. The fusion proteins also efficiently inhibited CCN1/2-stimulated cell migration and gap closure following scratch wound of fibroblasts. Fusion protein with the CCN3 TSP1 domain inhibited these functions with similar efficacy and potency as that of the CCN5 TSP1 domain. The CCN5 TSP1 domain also recapitulated a positive regulatory function previously assigned to full-length CCN5, that is, induction of estrogen receptor-α mRNA expression in triple negative MDA-MB-231 mammary adenocarcinoma cells and inhibited epithelial-to-mesenchymal transition and CCN2-induced mammosphere formation of MCF-7 adenocarcinoma cells. In conclusion, the CCN5 TSP1 domain is the bioactive entity that confers the biologic functions of unprocessed CCN5.


Asunto(s)
Adenocarcinoma , Factor de Crecimiento del Tejido Conjuntivo , Animales , Cricetinae , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Cricetulus , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Péptidos , Proteínas Recombinantes
4.
Mol Cancer ; 23(1): 166, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138571

RESUMEN

BACKGROUND: Ovarian cancer (OC) remains one of the most challenging and deadly malignancies facing women today. While PARP inhibitors (PARPis) have transformed the treatment landscape for women with advanced OC, many patients will relapse and the PARPi-resistant setting is an area of unmet medical need. Traditional immunotherapies targeting PD-1/PD-L1 have failed to show any benefit in OC. The CD47/TSP-1 axis may be relevant in OC. We aimed to describe changes in CD47 expression with platinum therapy and their relationship with immune features and prognosis. METHODS: Tumor and blood samples collected from OC patients in the CHIVA trial were assessed for CD47 and TSP-1 before and after neoadjuvant chemotherapy (NACT) and multiplex analysis was used to investigate immune markers. Considering the therapeutic relevance of targeting the CD47/TSP-1 axis, we used the CD47-derived TAX2 peptide to selectively antagonize it in a preclinical model of aggressive ovarian carcinoma. RESULTS: Significant reductions in CD47 expression were observed post NACT. Tumor patients having the highest CD47 expression profile at baseline showed the greatest CD4+ and CD8+ T-cell influx post NACT and displayed a better prognosis. In addition, TSP-1 plasma levels decreased significantly under NACT, and high TSP-1 was associated with a worse prognosis. We demonstrated that TAX2 exhibited a selective and favorable biodistribution profile in mice, localizing at the tumor sites. Using a relevant peritoneal carcinomatosis model displaying PARPi resistance, we demonstrated that post-olaparib (post-PARPi) administration of TAX2 significantly reduced tumor burden and prolonged survival. Remarkably, TAX2 used sequentially was also able to increase animal survival even under treatment conditions allowing olaparib efficacy. CONCLUSIONS: Our study thus (1) proposes a CD47-based stratification of patients who may be most likely to benefit from postoperative immunotherapy, and (2) suggests that TAX2 is a potential alternative therapy for patients relapsing on PARP inhibitors.


Asunto(s)
Biomarcadores de Tumor , Antígeno CD47 , Neoplasias Ováricas , Trombospondina 1 , Antígeno CD47/metabolismo , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Biomarcadores de Tumor/metabolismo , Animales , Ratones , Trombospondina 1/metabolismo , Pronóstico , Línea Celular Tumoral , Terapia Neoadyuvante , Ensayos Antitumor por Modelo de Xenoinjerto , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Cancer Immunol Immunother ; 73(8): 145, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832992

RESUMEN

Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.


Asunto(s)
Antígeno CD47 , Progresión de la Enfermedad , Neoplasias Ováricas , Humanos , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Femenino , Inmunoterapia/métodos , Animales
6.
Mol Cell Biochem ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652215

RESUMEN

Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-ß-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.

7.
J Biol Chem ; 298(2): 101586, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032551

RESUMEN

Signaling by bone morphogenetic proteins (BMPs) plays pivotal roles in embryogenesis, adult tissue homeostasis, and disease. Recent studies revealed that the well-established WNT agonist R-spondin 2 (RSPO2) is also a BMP receptor (BMP receptor type 1A) antagonist, with roles in early Xenopus embryogenesis and human acute myeloid leukemia (AML). To uncouple the BMP antagonist function from the WNT agonist function and to promote development of AML therapeutics, here we identified a 10-mer peptide (RW) derived from the thrombospondin 1 domain of RSPO2, which specifically prevents binding between RSPO2 and BMP receptor type 1A without altering WNT signaling. We also show that a corresponding RW dendrimer (RWd) exhibiting improved half-life relieves inhibition of BMP receptor signaling by RSPO2 in human AML cells, reduces cell growth, and induces differentiation. Moreover, microinjection of RWd in Xenopus embryos ventralizes the dorsoventral embryonic patterning by upregulating BMP signaling without affecting WNT signaling. Our study corroborates the function of RSPO2 as a BMP receptor antagonist and provides a proof of concept for pharmacologically uncoupling BMP antagonist from WNT agonist functions of RSPO2 using the inhibitor peptide RWd with enhanced target selectivity and limited side effects.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas , Dendrímeros , Leucemia Mieloide Aguda , Proteínas Wnt , Adulto , Animales , Receptores de Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas , Dendrímeros/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fragmentos de Péptidos , Proteínas/farmacología , Proteínas Wnt/agonistas , Vía de Señalización Wnt , Xenopus laevis
8.
J Transl Med ; 21(1): 869, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037074

RESUMEN

BACKGROUND: Natural killer (NK) cells play an important first-line role against tumour and viral infections and are regulated by inhibitory receptor expression. Among these inhibitory receptors, the expression, function, and mechanism of cluster of differentiation 47 (CD47) on NK cells during human immunodeficiency virus (HIV) infection remain unclear. METHODS: Fresh peripheral blood mononuclear cells (PBMCs) were collected from people living with HIV (PLWH) and HIV negative controls (NC) subjects. Soluble ligand expression levels of CD47 were measured using ELISA. HIV viral proteins or Toll-like receptor 7/8 (TLR7/8) agonist was used to investigate the mechanisms underlying the upregulation of CD47 expression. The effect of CD47 on NK cell activation, proliferation, and function were evaluated by flow cytometry. RNA-seq was used to identify downstream pathways for CD47 and its ligand interactions. A small molecule inhibitor was used to restore the inhibition of NK cell function by CD47 signalling. RESULTS: CD47 expression was highly upregulated on the NK cells from PLWH, which could be due to activation of the Toll-like receptor 7/8 (TLR7/8) pathway. Compared with NC subjects, PLWH subjects exhibited elevated levels of CD47 ligands, thrombospondin-1 (TSP1), and counter ligand signal regulatory protein-α (SIRPα). The TSP1-CD47 axis drives the suppression of interferon gamma (IFN-γ) production and the activation of the Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway in NK cells. After treatment with a STAT3 inhibitor, the NK cells from PLWH showed significantly improved IFN-γ production. CONCLUSIONS: The current data indicate that the binding of the inhibitory receptor CD47 to plasma TSP1 suppresses NK cell IFN-γ production by activating the JAK/STAT3 pathway during HIV infection. Our results suggest that CD47 and its related signalling pathways could be targets for improving NK cell function in people living with HIV.


Asunto(s)
Infecciones por VIH , Receptor Toll-Like 7 , Humanos , Antígeno CD47 , Quinasas Janus/metabolismo , Células Asesinas Naturales/metabolismo , Leucocitos Mononucleares/metabolismo , Ligandos , Factor de Transcripción STAT3/metabolismo , Interferón gamma/metabolismo
9.
Neurochem Res ; 48(10): 3212-3227, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402036

RESUMEN

Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 h in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and inhibition of the receptor for thrombospondins prevented the increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, where neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.


Asunto(s)
Astrocitos , Sinapsis , Ratas , Animales , Astrocitos/metabolismo , Sinapsis/metabolismo , Neuronas/metabolismo , Técnicas de Cocultivo , Colinérgicos/farmacología , Colinérgicos/metabolismo
10.
Thromb J ; 21(1): 71, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386453

RESUMEN

OBJECTIVE AND DESIGN: An accumulating body of evidence has shown that gut microbiota is involved in regulating inflammation; however, it remains undetermined if and how gut microbiota plays an important role in modulating deep venous thrombosis (DVT), which is an inflammation-involved thrombotic event. SUBJECTS: Mice under different treatments were used in this study. METHODS AND TREATMENT: We induced stenosis DVT in mice by partially ligating the inferior vena cava. Mice were treated with antibiotics, prebiotics, probiotics, or inflammatory reagents to modulate inflammatory states, and their effects on the levels of circulating LPS and DVT were examined. RESULTS: Antibiotic-treated mice or germ-free mice exhibited compromised DVT. Treatment of mice with either prebiotics or probiotics effectively suppressed DVT, which was accompanied with the downregulation of circulating LPS. Restoration of circulating LPS in these mice with a low dose of LPS was able to restore DVT. LPS-induced DVT was blocked by a TLR4 antagonist. By performing proteomic analysis, we identified TSP1 as one of the downstream effectors of circulating LPS in DVT. CONCLUSION: These results suggest that gut microbiota may play a nonnegligible role in modulating DVT by leveraging the levels of LPS in circulation, thus shedding light on the development of gut microbiota-based strategies for preventing and treating DVT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA