RESUMEN
Nanoplastics pose significant environmental problems due to their high mobility and increased toxicity. These particles can cause infertility and inflammation in aquatic organisms, disrupt microbial signaling and act as pollutants carrier. Despite extensive studies on their harmful impact on living organisms, the microbial degradation of nanoplastics is still under research. This study investigated the degradation of nanoplastics by isolating bacteria from the gut microbiome of Tenebrio molitor larvae fed various plastic diets. Five bacterial strains capable of degrading polystyrene were identified, with Achromobacter xylosoxidans M9 showing significant nanoplastic degradation abilities. Within 6 days, this strain reduced nanoplastic particle size by 92.3%, as confirmed by SEM and TEM analyses, and altered the chemical composition of the nanoplastics, indicating a potential for enhanced bioremediation strategies. The strain also caused a 7% weight loss in polystyrene film over 30 days, demonstrating its efficiency in degrading nanoplastics faster than polystyrene film. These findings might enhance plastic bioremediation strategies.
Asunto(s)
Achromobacter denitrificans , Biodegradación Ambiental , Microbioma Gastrointestinal , Poliestirenos , Animales , Poliestirenos/metabolismo , Achromobacter denitrificans/metabolismo , Plásticos/metabolismo , Plásticos/química , Larva/microbiología , Microplásticos/metabolismoRESUMEN
A bacterial strain designated PU5-4T was isolated from the mealworm (the larvae of Tenebrio molitor) intestines. It was identified to be Gram-stain-negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Strain PU5-4T was observed to grow at 10-40â°C, at pH 7.0-10.0, and in the presence of 0-3.0â% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PU5-4T should be assigned to the genus Sphingobacterium. The 16S rRNA gene sequence similarity analysis showed that strain PU5-4T was closely related to the type strains of Sphingobacterium lactis DSM 22361T (98.49â%), Sphingobacterium endophyticum NYYP31T (98.11â%), Sphingobacterium soli NCCP 698T (97.69â%) and Sphingobacterium olei HAL-9T (95.73â%). The predominant isoprenoid quinone is MK-7. The major fatty acids were identified as iso-C15â:â0, iso-C17â:â03-OH and summed feature 3 (C16â:â1 ω7c and/or C16â:â1 ω6c) and summed feature 9 (iso-C17â:â0 ω9c). The polar lipids are phosphatidylethanolamine, one unidentified phospholipid, and six unidentified lipids. The genomic DNA G+C content of strain PU5-4T is 40.24 mol%. The average nucleotide identity of strain PU5-4T exhibited respective values of 73.88, 73.37, 73.36 and 70.84â% comparing to the type strains of S. lactis DSM 22361T, S. soli NCCP 698T, S. endophyticum NYYP31T and S. olei HAL-9T, which are below the cut-off level (95-96â%) for species delineation. Based on the above results, strain PU5-4T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium temoinsis sp. nov. is proposed. The type strain is PU5-4T (=CGMCC 1.61908T=JCM 36663T).
Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Intestinos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Sphingobacterium , Tenebrio , Vitamina K 2 , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Sphingobacterium/genética , Sphingobacterium/aislamiento & purificación , Sphingobacterium/clasificación , Animales , Intestinos/microbiología , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Tenebrio/microbiología , Fosfatidiletanolaminas , Larva/microbiología , Fosfolípidos/análisisRESUMEN
Numerous insect species and their associated microbial pathogens are exposed to elevated CO2 concentrations in both artificial and natural environments. However, the impacts of elevated CO2 on the fitness of these pathogens and the susceptibility of insects to pathogen infections are not well understood. The yellow mealworm, Tenebrio molitor, is commonly produced for food and feed purposes in mass-rearing systems, which increases risk of pathogen infections. Additionally, entomopathogens are used to control T. molitor, which is also a pest of stored grains. It is therefore important to understand how elevated CO2 may affect both the pathogen directly and impact on host-pathogen interactions. We demonstrate that elevated CO2 concentrations reduced the viability and persistence of the spores of the bacterial pathogen Bacillus thuringiensis. In contrast, conidia of the fungal pathogen Metarhizium brunneum germinated faster under elevated CO2. Pre-exposure of the two pathogens to elevated CO2 prior to host infection did not affect the survival probability of T. molitor larvae. However, larvae reared at elevated CO2 concentrations were less susceptible to both pathogens compared to larvae reared at ambient CO2 concentrations. Our findings indicate that whilst elevated CO2 concentrations may be beneficial in reducing host susceptibility in mass-rearing systems, they may potentially reduce the efficacy of the tested entomopathogens when used as biological control agents of T. molitor larvae. We conclude that CO2 concentrations should be carefully selected and monitored as an additional environmental factor in laboratory experiments investigating insect-pathogen interactions.
Asunto(s)
Bacillus thuringiensis , Dióxido de Carbono , Animales , Insectos , Larva , Agentes de Control BiológicoRESUMEN
The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.
Asunto(s)
Microbiota , Tenebrio , Animales , Tenebrio/metabolismo , Tenebrio/microbiología , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bacterias/metabolismo , Biodegradación AmbientalRESUMEN
Mealworms (Tenebrio molitor) larvae can degrade both plastics and lignocellulose through synergistic biological activities of their gut microbiota because they share similarities in chemical and physical properties. Here, a total of 428 genes encoding lignocellulose-degrading enzymes were screened from the gut microbiome of T. molitor larvae to identify poly(ethylene terephthalate) (PET)-degrading activities. Five genes were successfully expressed in E. coli, among which a feruloyl esterase-like enzyme named TmFae-PETase demonstrated the highest PET degradation activity, converting PET into MHET (0.7 mgMHETeq ·h-1·mgenzyme-1) and TPA (0.2 mgTPAeq ·h-1·mgenzyme-1) at 50 °C. TmFae-PETase showed a preference for the hydrolysis of ferulic acid methyl ester (MFA) in the presence of both PET and MFA. Site-directed mutagenesis and molecular dynamics simulations of TmFae-PETase revealed similar catalytic mechanisms for both PET and MFA. TmFae-PETase effectively depolymerized commercial PET, making it a promising candidate for application. Additionally, the known PET hydrolases IsPETase, FsC, and LCC also hydrolyzed MFA, indicating a potential origin of PET hydrolytic activity from its lignocellulosic-degrading abilities. This study provides an innovative strategy for screening PET-degrading enzymes identified from lignocellulose degradation-related enzymes within the gut microbiome of plastic-degrading mealworms. This discovery expands the existing pool of plastic-degrading enzymes available for resource recovery and bioremediation applications.
Asunto(s)
Microbioma Gastrointestinal , Larva , Tereftalatos Polietilenos , Tenebrio , Animales , Tereftalatos Polietilenos/metabolismo , Biodegradación Ambiental , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Plásticos/metabolismoRESUMEN
The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37 versus -24.88) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.
Asunto(s)
Biodegradación Ambiental , Larva , Microplásticos , Poliestirenos , Tenebrio , Animales , Microplásticos/metabolismo , Tenebrio/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Microbioma GastrointestinalRESUMEN
The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.
RESUMEN
BACKGROUND AND OBJECTIVE: With the global population on the rise, edible insects are considered a potential solution to food security, although concerns about risks such as anaphylaxis exist. METHODS: 2,014 participants underwent testing with the Allergy Explorer-ALEX-2 including extracts of three novel foods: Acheta Domesticus (Ad), Locusta migratoria (Lm), and Tenebrio molitor (Tm). The IgE-mediated sensitization status was investigated in participants who had never knowingly consumed these insects. Data was recorded using an electronic database. RESULTS: 195 individuals (9.7% of all participants) were sensitized to insects. Tropomyosin was co-recognized by 34%, and 18.5% were positive for arginine kinases. Reactivity to Sarcoplasmic-CB, Troponin-C, Paramyosin, or Myosin-light-chain was found in less than 5% of the population, whereas 108 individuals (55.4%) did not show any reactivity to invertebrate panallergens. Additionally, 33 individuals (16.9%) exhibited monosensitization exclusively to insects. Multivariate analysis revealed an inverse association between arachnid reactivity and sensitization to insect allergens, while Mollusca, Blattoidea, and tropomyosin reactivity displayed a direct relationship. Furthermore, Myosin-light-chain reactivity correlated with Ad and Lm, and Troponin-C with Ad and Tm sensitization. CONCLUSION: Edible insect extract IgE sensitization was observed in individuals without prior exposure to such foods. Mites showed a low likelihood of being primary sensitizers due to their inverse association with insect reactivity. Conversely, the direct association of insect sensitization with mollusk and cockroach extract reactivity suggests their potential as primary sensitizers in these participants. Tropomyosin consistently exhibited a positive association with reactivity to all studied insects, supporting its role as a primary sensitizer.
RESUMEN
The thermal environment is a critical determinant of outcomes in host-pathogen interactions, yet the complexities of this relationship remain underexplored in many ecological systems. We examined the Thermal Mismatch Hypothesis (TMH) by measuring phenotypic variation in individual thermal performance profiles using a model system of two species of entomopathogenic fungi (EPF) that differ in their ecological niche, Metarhizium brunneum and M. flavoviride, and a warm-adapted model host, the mealworm Tenebrio molitor. We conducted experiments across ecologically relevant temperatures to determine the thermal performance curves for growth and virulence, measured as % survival, identify critical thresholds for these measures, and elucidate interactive host-pathogen effects. Both EPF species and the host exhibited a shared growth optima at 28 °C, while the host's growth response was moderated in sublethal pathogen infections that depended on fungus identity and temperature. However, variances in virulence patterns were different between pathogens. The fungus M. brunneum exhibited a broader optimal temperature range (23-28 °C) for virulence than M. flavoviride, which displayed a multiphasic virulence-temperature relationship with distinct peaks at 18 and 28 °C. Contrary to predictions of the TMH, both EPF displayed peak virulence at the host's optimal temperature (28 °C). The thermal profile for M. brunneum aligned more closely with that of T. molitor than that for M. flavoviride. Moreover, the individual thermal profile of M. flavoviride closely paralleled its virulence thermal profile, whereas the virulence thermal profile of M. brunneum did not track with its individual thermal performance. This suggests an indirect, midrange (23 °C) effect, where M. brunneum virulence exceeded growth. These findings suggest that the evolutionary histories and ecological adaptations of these EPF species have produced distinct thermal niches during the host interaction. This study contributes to our understanding of thermal ecology in host-pathogen interactions, underpinning the ecological and evolutionary factors that shape infection outcomes in entomopathogenic fungi. The study has ecological implications for insect population dynamics in the face of a changing climate, as well as practically for the use of these organisms in biological control.
Asunto(s)
Interacciones Huésped-Patógeno , Metarhizium , Tenebrio , Animales , Metarhizium/patogenicidad , Metarhizium/fisiología , Tenebrio/microbiología , Virulencia , Temperatura , Control Biológico de VectoresRESUMEN
Tenebrio molitor L., also known as the mealworm, is a polyphagous insect pest that infests various stored grains worldwide. Both the adult and larval stages can cause significant damage to stored grains. The present study focused on isolating entomopathogenic fungi from an infected larval cadaver under environmental conditions. Fungal pathogenicity was tested on T. molitor larvae and pupae for 12 days. Entomopathogenic fungi were identified using biotechnological methods based on their morphology and the sequence of their nuclear ribosomal internal transcribed spacer (ITS). The results of the insecticidal activity indicate that the virulence of fungi varies between the larval and pupal stages. In comparison to the larval stage, the pupal stage is highly susceptible to Metarhizium rileyi, exhibiting 100% mortality rates after 12 days (lethal concentration 50 [LC50] = 7.8 × 106 and lethal concentration 90 (LC90) = 2.1 × 1013 conidia/mL), whereas larvae showed 92% mortality rates at 12 days posttreatment (LC50 = 1.0 × 106 and LC90 = 3.0 × 109 conidia/mL). The enzymatic analyses revealed a significant increase in the levels of the insect enzymes superoxide dismutase (4.76-10.5 mg-1) and glutathione S-transferase (0.46-6.53 mg-1) 3 days after exposure to M. rileyi conidia (1.5 × 105 conidia/mL) compared to the control group. The findings clearly show that M. rileyi is an environmentally friendly and effective microbial agent for controlling the larvae and pupae of T. molitor.
Asunto(s)
Larva , Metarhizium , Control Biológico de Vectores , Pupa , Tenebrio , Animales , Tenebrio/microbiología , Metarhizium/patogenicidad , Metarhizium/crecimiento & desarrollo , Larva/microbiología , Pupa/microbiología , Virulencia , Superóxido Dismutasa/metabolismo , Glutatión Transferasa/metabolismoRESUMEN
Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.
Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos , Tenebrio , Transcriptoma , Animales , Tenebrio/genética , Tenebrio/enzimología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia , Serina Proteasas/genética , Serina Proteasas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Secuencia de AminoácidosRESUMEN
Foods enriched with insects can potentially prevent several health disorders, including cardiovascular diseases, by reducing inflammation and improving antioxidant status. In this study, Tenebrio molitor and Gryllus assimilis were selected to determine the effect on the development of atherosclerosis in ApoE/LDLR-/- mice. Animals were fed AIN-93G-based diets (control) with 10% Tenebrio molitor (TM) and 10% Gryllus assimilis (GA) for 8 weeks. The nutritional value as well as antioxidant activity of selected insects were determined. The lipid profile, liver enzyme activity, and the fatty acid composition of liver and adipose tissue of model mice were evaluated. Quantitative analysis of atherosclerotic lesions in the entire aorta was performed using the en face method, and for aortic roots, the cross-section method was used. The antioxidant status of the GA cricket was significantly higher compared to the TM larvae. The results showed that the area of atherosclerosis (en face method) was not significantly different between groups. Dietary GA reduced plaque formation in the aortic root; additionally, significant differences were observed in sections at 200 and 300 µm compared to other groups. Furthermore, liver enzyme ALT activity was lower in insect-fed groups compared to the control group. The finding suggests that a diet containing edible insect GA potentially prevents atherosclerotic plaque development in the aortic root, due to its high antioxidant activity.
Asunto(s)
Apolipoproteínas E , Aterosclerosis , Receptores de LDL , Animales , Aterosclerosis/patología , Aterosclerosis/metabolismo , Ratones , Receptores de LDL/genética , Receptores de LDL/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Insectos Comestibles , Ratones Noqueados , Hígado/metabolismo , Hígado/patología , Antioxidantes/metabolismo , Masculino , Tenebrio , Dieta , Aorta/patología , Aorta/metabolismo , Modelos Animales de Enfermedad , Alimentación Animal , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , GryllidaeRESUMEN
Insects receive increasing attention as an alternative source of protein for animals and humans, and thus, the production of low-cost insects for meeting the dietary demand on sustained basis is an ever-growing concept. This study aims to design dietswith locally available agricultural byproducts from Greece as feed for larvae of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae). This will considerably reduce the cost of insect feed and the environmental impact of insect farming by using locally available agricultural byproducts as economic insect feedstock. More specifically, five agricultural byproducts derived from the production of cereals and legumes were utilized to design twelve different diets at two protein levels, i.e., 17.4 and 22.5% protein content. All diets were evaluated both at laboratory scale, but also at pilot scale. Based on the obtained results, both bioassays revealed that the diets contained one legume and one cereal byproduct (i.e., lupin and triticale as well as lupin and oat) supported more efficiently the growth and performance of the larvae, irrespective of the protein level. Indicatively, individual larval weight of the best performed larvae from both groups ranged from 132 to 142 mg. Moreover, our results highlight the fact that data derived from laboratory scale bioassays are not always easy to be extrapolated to industrial production. For instance, the total harvest of larvae, a parameter assessed in the tray scale bioassay, exhibited a disparity between diet A2 (910 g) and diet A3 (749 g), despite both being deemed optimal in the laboratory-scale experiment. Our study aims to promote a circular approach for the industrial rearing of insects through integration of local agricultural byproducts into specific diets for T. molitor larvae.
Asunto(s)
Escarabajos , Tenebrio , Animales , Humanos , Tenebrio/metabolismo , Alimentación Animal/análisis , Larva/metabolismo , Proteínas/metabolismo , Granjas , VerdurasRESUMEN
The problem of food safety being an important component of the country's food security, provides not only for continuous improvement of the methodology of hygienic standardization, but also for the formation of requirements for novel food, in particular, those obtained from non-traditional sources. The accumulated practical and theoretical competence in the food hygiene area, as well as knowledge of current trends of the food base broadening, allow us to analyze the risks associated with novel food obtained of insects. The purpose of the research was to analyze the microbiological and parasitological risk of novel food sources obtained with the use of insects, suggest the effective risk management measures. Material and methods. The analytical part of the work included literature search, collection of information and statistical materials published in domestic and foreign scientific editions. The search was carried out using the Google Academy retrieval system and electronic databases (PubMed, MEDLINE, EMBASE, Scopus, Web of Science, eLIBRARY), mainly in the last 25 years, using the keywords: Hermetia illucens, Tenebrio molitor, Acheta domesticus, insects, parasite, nematode, pathogen, cysts. Results. Based on the published materials' analysis, a systematization of microbiological and parasitological factors potentially capable of colonizing edible insects has been carried out. There were identified representatives of 24 groups of pathogenic and 18 opportunistic microorganisms and helminths related to microbial and parasitic pathogens, the spread of which is significantly influenced by inappropriate conditions of feeding and keeping insects. As there are currently no veterinary requirements for insect breeding and farming conditions, contamination of end products with infectious and parasitic pathogens can vary over a very wide range. Conclusion. The use of native insect biomass carries certain risks associated with its microbial and parasitic contamination, and the development of measures to prevent them requires significant resources. The possibility of deep processing of such raw materials can be considered as one of the solutions to mitigate these risks. For use in the food industry, insects should be subjected to processing similar to that currently used for soybean seeds, which includes separation of protein (entomoprotein), fat and chitin fractions, each of which would have an independent use. Thus, at present, insects should be considered as a source of novel food ingredients, first of all, complete protein of animal origin.
Asunto(s)
Microbiología de Alimentos , Animales , Humanos , Insectos Comestibles/microbiología , Insectos Comestibles/parasitología , Parasitología de Alimentos , Inocuidad de los Alimentos , Insectos/microbiología , Medición de RiesgoRESUMEN
Invertebrates can provide a valuable alternative to traditional vertebrate animal models for studying bacterial and fungal infections. This study aimed to establish the larvae of the coleoptera Tenebrio molitor (mealworm) as an in vivo model for evaluating virulence and horizontal gene transfer between Staphylococcus spp. After identifying the best conditions for rearing T. molitor, larvae were infected with different Staphylococcus species, resulting in dose-dependent killing curves. All species tested killed the insects at higher doses, with S. nepalensis and S. aureus being the most and least virulent, respectively. However, only S. nepalensis was able to kill more than 50% of larvae 72 h post-infection at a low amount of 105 CFU. Staphylococcus infection also stimulated an increase in the concentration of hemocytes present in the hemolymph, which was proportional to the virulence. To investigate T. molitor's suitability as an in vivo model for plasmid transfer studies, we used S. aureus strains as donor and recipient of a plasmid containing the gentamicin resistance gene aac(6')-aph(2â³). By inoculating larvae with non-lethal doses of each, we observed conjugation, and obtained transconjugant colonies with a frequency of 1.6 × 10-5 per donor cell. This study demonstrates the potential of T. molitor larvae as a reliable and cost-effective model for analyzing the virulence of Staphylococcus and, for the first time, an optimal environment for the plasmid transfer between S. aureus carrying antimicrobial resistance genes.
Asunto(s)
Tenebrio , Animales , Virulencia/genética , Tenebrio/microbiología , Staphylococcus/genética , Staphylococcus aureus/genética , Transferencia de Gen Horizontal , Larva/microbiologíaRESUMEN
Animals must acquire an ideal amount and balance of macronutrients to optimize their performance, health and fitness. The nutritional landscape provides an integrative framework for analysing how animal phenotypes are associated with multiple nutritional components. Here, we applied this powerful approach to examine how the intake of protein and carbohydrate affects nutrient acquisition and performance in the yellow mealworm (Tenebrio molitor) reared on one of 42 synthetic foods varying in protein and carbohydrate content. Tenebrio molitor larvae increased their food consumption rate in response to nutrient dilution, but this increase was not sufficient to fully compensate for the dilution. Diluting the food nutrient content with cellulose reduced the efficiency of post-ingestive nutrient utilization, further restricting macronutrient acquisition. Tenebrio molitor larvae utilized macronutrients most efficiently at a protein to carbohydrate (P:C) ratio of 1.77:1, but became less efficient at imbalanced P:C ratios. Survivorship was high at high protein intake and fell with decreasing protein intake. Pupal mass and growth rate exhibited a bell-shaped landscape, with the nutritional optima being located around protein-biased P:C ratios of 1.99:1 to 2.03:1 and 1.66:1 to 2.86:1, respectively. The nutritional optimum for development time was also identified at high P:C ratios (1.66:1 to 5.86:1). Unlike these performance traits, lipid content was maximized at carbohydrate-biased P:C ratios of 1:3.88 to 1:3.06. When given a food choice, T. molitor larvae self-composed a slightly carbohydrate-biased P:C ratio of 1:1.24, which lies between the P:C ratios that maximize performance and lipid content. Our findings indicate the occurrence of a nutrient-mediated trade-off between performance and energy storage in this insect.
Asunto(s)
Tenebrio , Animales , Tenebrio/fisiología , Preferencias Alimentarias , Nutrientes , Larva/fisiología , Carbohidratos , LípidosRESUMEN
By preventing freezing, antifreeze proteins (AFPs) can permit cells and organs to be stored at subzero temperatures. As metabolic rates decrease with decreasing temperature, subzero static cold storage (SZ-SCS) could provide more time for tissue matching and potentially lead to fewer discarded organs. Human kidneys are generally stored for under 24 h and the tubule epithelium is known to be particularly sensitive to static cold storage (SCS). Here, telomerase-immortalized proximal-tubule epithelial cells from humans, which closely resemble their progenitors, were used as a proxy to assess the potential benefit of SZ-SCS for kidneys. The effects of hyperactive AFPs from a beetle and Cryostasis Storage Solution were compared to University of Wisconsin Solution at standard SCS temperatures (4 °C) and at -6 °C for up to six days. Although the AFPs helped guard against freezing, lower storage temperatures under these conditions were not beneficial. Compared to cells at 4 °C, those stored at -6 °C showed decreased viability as well as increased lactate dehydrogenase release and apoptosis. This suggests that this kidney cell type might be prone to chilling injury and that the addition of AFPs to enable SZ-SCS may not be effective for increasing storage times.
Asunto(s)
Criopreservación , Soluciones Preservantes de Órganos , Humanos , Criopreservación/métodos , Proteínas Anticongelantes/metabolismo , Túbulos Renales/metabolismoRESUMEN
Mealworms are one of the most economically important insects in large-scale production for human and animal nutrition. Densoviruses are highly pathogenic for invertebrates and exhibit an extraordinary level of diversity which rivals that of their hosts. Molecular, clinical, histological, and electron microscopic characterization of novel densovirus infections is of utmost economic and ecological importance. Here, we describe an outbreak of densovirus with high mortality in a commercial mealworm (Tenebrio molitor) farm. Clinical signs included inability to prehend food, asymmetric locomotion evolving to nonambulation, dehydration, dark discoloration, and death. Upon gross examination, infected mealworms displayed underdevelopment, dark discoloration, larvae body curvature, and organ/tissue softness. Histologically, there was massive epithelial cell death, and cytomegaly and karyomegaly with intranuclear inclusion (InI) bodies in the epidermis, pharynx, esophagus, rectum, tracheae, and tracheoles. Ultrastructurally, these InIs represented a densovirus replication and assembly complex composed of virus particles ranging from 23.79 to 26.99 nm in diameter, as detected on transmission electron microscopy. Whole-genome sequencing identified a 5579-nucleotide-long densovirus containing 5 open reading frames. A phylogenetic analysis of the mealworm densovirus showed it to be closely related to several bird- and bat-associated densoviruses, sharing 97% to 98% identity. Meanwhile, the nucleotide similarity to a mosquito, cockroach, and cricket densovirus was 55%, 52%, and 41%, respectively. As this is the first described whole-genome characterization of a mealworm densovirus, we propose the name Tenebrio molitor densovirus (TmDNV). In contrast to polytropic densoviruses, this TmDNV is epitheliotropic, primarily affecting cuticle-producing cells.
Asunto(s)
Densovirus , Tenebrio , Animales , Brotes de Enfermedades/veterinaria , Electrones , Granjas , Larva , Nucleótidos/metabolismo , Filogenia , Tenebrio/metabolismoRESUMEN
The progression of drugs into clinical phases requires proper toxicity assessment in animals and the correct identification of possible metabolites. Accordingly, different animal models are used to preliminarily evaluate toxicity and biotransformations. Rodents are the most common models used to preliminarily evaluate the safety of drugs; however, their use is subject to ethical consideration and elevated costs, and strictly regulated by national legislations. Herein, we developed a novel, cheap and convenient toxicity model using Tenebrio molitor coleoptera (TMC). A panel of 15 drugs-including antivirals and antibacterials-with different therapeutic applications was administered to TMC and the LD50 was determined. The values are comparable with those already determined in mice and rats. In addition, a TMC model was used to determine the presence of the main metabolites and in vivo pharmacokinetics (PK), and results were compared with those available from in vitro assays and the literature. Taken together, our results demonstrate that TMC can be used as a novel and convenient preliminary toxicity model to preliminarily evaluate the safety of experimental compounds and the formation of main metabolites, and to reduce the costs and number of rodents, according to 3R principles.
Asunto(s)
Escarabajos , Tenebrio , Animales , Ratones , Ratas , Tenebrio/metabolismoRESUMEN
Although Toll-like receptors have been widely identified and functionally characterized in mammalian models and Drosophila, the immunological function of these receptors in other insects remains unclear. Here, we explored the relevant innate immune response of Tenebrio molitor (T. molitor) Toll-3 against Gram-negative bacteria, Gram-positive bacteria, and fungal infections. Our findings indicated that TmToll-3 expression was mainly induced by Candida albicans infections in the fat bodies, gut, Malpighian tubules, and hemolymph of young T. molitor larvae. Surprisingly, Escherichia coli systemic infection caused mortality after TmToll-3 knockdown via RNA interference (RNAi) injection, which was not observed in the control group. Further analyses indicated that in the absence of TmToll-3, the final effector of the Toll signaling pathway, antimicrobial peptide (AMP) genes and relevant transcription factors were significantly downregulated after E. coli challenge. Our results indicated that the expression of almost all AMP genes was suppressed in silenced individuals, whereas the expression of relevant genes was positively regulated after fungal injection. Therefore, this study revealed the immunological involvement of TmToll-3 in T. molitor in response to systematic infections.