RESUMEN
BACKGROUND: Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS: The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS: The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS: MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.
Asunto(s)
Histonas , MicroARNs , Humanos , Ratas , Animales , Histonas/metabolismo , Células Madre , Diferenciación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Dentina , Células Cultivadas , Histona Demetilasas con Dominio de Jumonji/genéticaRESUMEN
Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.
Asunto(s)
Dentina , Ratones Noqueados , Receptores de Calcitriol , Animales , Receptores de Calcitriol/metabolismo , Dentina/metabolismo , Ratones , Biglicano/metabolismo , Cicatrización de Heridas , Ratones Endogámicos C57BL , Decorina/metabolismo , Calcificación FisiológicaRESUMEN
The transforming growth factor ß (TGFß) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFß signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFß receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFß-related diseases.
Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Pulpa Dental , Dentina , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Animales , Pulpa Dental/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética , Dentina/metabolismo , Ratones Noqueados , Odontoblastos/metabolismoRESUMEN
BACKGROUND AND AIM: To compare two cone beam computed tomography (CBCT) analysis techniques for measuring tertiary dentin (TD) volume, density, and root length increase, after indirect pulp therapy (IPT) in young permanent teeth with conventional periapical radiographs. DESIGN: Comparative study design: Sixty-nine CBCT scans were taken initially (T1) and after 1 year (T2) of IPT. New CBCT analysis technique A, standardization, segmentation, and registration of T1 and T2 scans were performed using ITK-SNAP and 3D Slicer CMF to measure TD volume (mm3), density (gray-level intensity), and root length increase (mm). In the traditional CBCT analysis technique B, analyses were conducted using the In-Vivo software to calculate TD thickness (mm), radiodensity (HU%), and root length increase (mm). Paired t-test and the intraclass correlation coefficient were calculated to compare and assess the reliability of all techniques. RESULTS: No significant difference between the two techniques existed in the measurement of TD mineral density (Mean [SD]:A = 22.4 [15.4]; B = 24.4 [15.4]; p = .47). Technique A resulted in significantly higher root length increase values (Mean [SD]: A = 1.3 [0.6]; B = 1.1 [0.5]; p = .03). The two techniques showed acceptable reliability levels (0.76-0.99). CONCLUSION: CBCT analysis techniques yielded similar findings for mineral density. The new CBCT volumetric analysis technique, although more laborious, produced higher values for root length increase, and allowed for measurement of dentin volume.
RESUMEN
The aim of this study was to conduct a three-dimensional (3D) evaluation of radiographic changes after indirect pulp capping (IPC) with silver diamine fluoride (SDF) with or without potassium iodide (KI) and resin-modified glass ionomer cement (RMGIC) in deep carious young permanent molars using cone-beam computed tomography (CBCT). 108 first permanent molars with deep occlusal cavitated caries lesions, in forty-nine 6- to 9-year-old children, were randomly allocated to one of 3 groups (n = 36) and treated with SDF+KI, SDF, and RMGIC as IPC materials. CBCT scans were taken at 0 and 12 months to assess tertiary dentin formation (volume and grey level intensity), increase in root length, and pathological changes such as secondary caries, periapical radiolucency, internal resorption, and obliteration of the pulp. The 3D image analysis procedures were performed using ITK-SNAP and 3D Slicer CMF. Comparisons were made using analysis of variance with a fixed effect for treatment and random effects for patient and patient-by-treatment to account for within-patient correlations. A two-sided 5% significance level was used. There were no significant differences among the three groups regarding tertiary dentin volume (p = 0.712) and grey level intensity (p = 0.660), increase in root length (p = 0.365), prevention of secondary caries (p = 0.63), and periapical radiolucency (p = 0.80) in the analysed 69 CBCT scans. The study did not find differences among the groups regarding quality and quantity of tertiary dentin formed, increase in root length, absence of secondary caries, and other signs of failure as shown by CBCT. Clinical Significance: The results show no significant differences in radiographic outcomes (quality and quantity of tertiary dentin formed, increase in root length, absence of secondary caries, and other signs of failure) when using SDF+KI, SDF, and RMGIC in IPC. The results of this study can help guide treatment decision-making regarding use of SDF and SDF+KI as IPC materials in deep cavitated lesions.
Asunto(s)
Caries Dental , Yoduro de Potasio , Niño , Humanos , Yoduro de Potasio/farmacología , Yoduro de Potasio/uso terapéutico , Recubrimiento de la Pulpa Dental/métodos , Dentina/diagnóstico por imagen , Dentina/patología , Fluoruros Tópicos/farmacología , Fluoruros Tópicos/uso terapéutico , Caries Dental/diagnóstico por imagen , Caries Dental/prevención & control , Caries Dental/patología , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/uso terapéutico , Cementos de Ionómero Vítreo/farmacología , Cementos de Ionómero Vítreo/uso terapéuticoRESUMEN
OBJECTIVE: This study aimed to evaluate changes on root canal morphology in patients with different ages using micro-CT technology. MATERIALS AND METHODS: Mandibular first molars (n = 150) were scanned at a pixel size of 13.68 µm, categorized into 3 groups according to patient's age and analyzed regarding configuration, orifices, apical foramina, root length, canal volume, and surface area. Morphological 2D and 3D parameters were evaluated in distal roots with Type I configuration (n = 109) as well as the morphology of isthmuses Types I and III in 68 mesial roots. One-way ANOVA post hoc Tukey and Kruskal-Wallis tests were used for statistical analyses (α = 5%). RESULTS: A great variation in the canal configuration was found. No difference was observed in roots' length (p > 0.05). Canal volume reduced with age (p < 0.05), while surface area increased (p < 0.05) in patients ≤ 30 years. There was no difference in canal/root length, area, and from foramen to the apex in distal roots with Type I configuration (p > 0.05), but 2D and 3D parameters significantly decreased with age (p < 0.05). Overall, the diameter of the isthmuses' roof reduced with age (p < 0.05). In patients ≥ 31 years with Type III isthmus the distance from the isthmus floor to the foramen of the mesiolingual canal also decreased (p < 0.05). CONCLUSION: Overall, the internal morphology of the mesial roots of mandibular first molars was more affected by aging than distal canals. The most relevant tested parameter that significantly reduced in both roots was the volume of the root canal systems. CLINICAL RELEVANCE: A detailed evaluation of fine anatomical aspects of the root canal system of mandibular first molars of patients with different ages showed that the internal morphology of mesial roots is more affected by aging than distal canals.
Asunto(s)
Cavidad Pulpar , Mandíbula , Humanos , Cavidad Pulpar/diagnóstico por imagen , Cavidad Pulpar/anatomía & histología , Microtomografía por Rayos X , Mandíbula/diagnóstico por imagen , Mandíbula/anatomía & histología , Tratamiento del Conducto Radicular , Diente Molar/diagnóstico por imagen , Diente Molar/anatomía & histología , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/anatomía & histologíaRESUMEN
OBJECTIVES: This in vitro study aimed to investigate the optical attenuation of light at 405, 660 and 780 nm sent through sound and carious human enamel and dentin, including respective individual caries zones, as well as microscopically sound-appearing tissue close to a carious lesion. MATERIALS AND METHODS: Collimated light transmission through sections of 1000-125-µm thickness was measured and used to calculate the attenuation coefficient (AC). The data were statistically analysed with a MANOVA and Tukey's HSD. Precise definition of measurement points enabled separate analysis within the microstructure of lesions: the outer and inner halves of enamel (D1, D2), the translucent zone (TZ) within dentin lesions and its adjacent layers, the enamel side of the translucent zone (ESTZ) and the pulpal side of the translucent zone (PSTZ). RESULTS: The TZ could be distinguished from its adjacent layers and from caries-free dentin at 125 µm. Sound-appearing dentin close to caries lesions significantly differed from caries-free dentin at 125 µm. While sound and carious enamel exhibited a significant difference (p < 0.05), this result was not found for D1 and D2 enamel lesions (p > 0.05). At 405 nm, no difference was found between sound and carious dentin (p > 0.05). CONCLUSIONS: Light optical means enable the distinction between sound and carious tissue and to identify the microstructure of dentin caries partially as well as the presence of tertiary dentin formation. Information on sample thickness is indispensable when interpreting the AC. CLINICAL RELEVANCE: Non-ionising light sources may be suitable to detect lesion progression and tertiary dentin.
Asunto(s)
Caries Dental , Dentina , Caries Dental/patología , Esmalte Dental/patología , Dentina/química , HumanosRESUMEN
BACKGROUND: Dentin hypersensitivity is a painful response to external stimuli applied to exposed dentinal tubules. Various toothpastes with active desensitizing ingredients for the relief of dentin hypersensitivity are commercially available. However, data from several studies suggest that the effects of desensitizing toothpastes are unstable and brief. This study aimed to investigate the effect of toothpastes containing CPNE7-derived oligopeptide (CPNE7-DP) and other active desensitizing ingredients in the dentin microleakage, tubule occlusion and tertiary dentin formation. METHODS: Using scanning electron microscopy (SEM), we evaluated the patency of dentinal tubules on the surface of human dentin disks after brushing experiments with the various toothpastes. Dentin was histologically evaluated in a hypersensitivity model of canine teeth, after the exposed dentin area was brushed for 6 weeks. The toothpaste used in group 1 (control) did not contain any desensitizing ingredients; that used in group 2 contained CPNE7-DP; Colgate Sensitive was used in group 3; and Sensodyne Rapid Relief was used in group 4. Finally, we conducted microleakage analysis to investigate the dentin sealing effect. The microleakage analysis data were subjected to one-way ANOVA and post-hoc Tukey tests (alpha = 0.05). RESULTS: In the SEM images, all four groups of teeth exhibited partial occlusion of the dentinal tubules on the tooth surface. In the in vivo hypersensitivity model, group 2 exhibited a newly formed tertiary dentin, whereas no new hard tissue formation was observed in groups 1, 3, and 4. Microleakage analysis revealed that the volume of dentinal fluid flow was significantly smaller in group 2 than in group 1. CONCLUSIONS: These results indicate that CPNE7-DP is a promising active ingredient with long-term dentin sealing effects.
Asunto(s)
Sensibilidad de la Dentina , Pastas de Dientes , Humanos , Pastas de Dientes/farmacología , Pastas de Dientes/uso terapéutico , Sensibilidad de la Dentina/tratamiento farmacológico , Dentina , Cepillado Dental/métodos , Fluoruro de Sodio , Microscopía Electrónica de RastreoRESUMEN
OBJECTIVES: We evaluated the effects of low-level laser therapy (LLLT) using an infrared laser (IRL) and a red laser (RL) on the pulp of molar teeth in rats after dental bleaching to assess inflammation, collagen fiber maturation, and tertiary dentin formation. MATERIALS AND METHODS: Eighty Wistar rats (Rattus norvegicus, albinus) were randomly divided into eight groups with 10 hemimaxillae in each of the following: control; bleached (Ble, 35% hydrogen peroxide [H2O2]); Ble-1IRL and Ble-1RL (one IRL [808 nm, 30 s, 3 J] or RL [660 nm, 15 s, 1.5 J] application immediately after H2O2); Ble-3IRL and Ble-3RL (three [immediately, 24 h, and 48 h] IRL or RL applications after H2O2); and 3IRL and 3RL (three IRL or RL applications without bleaching). The rats were euthanized after 2 and 30 days for histological evaluation of inflammation (hematoxylin-eosin) and maturation of collagen fibers (picrosirius red). Additionally, the dentin deposition in the specimens obtained at 30 days was quantified via microtomography of the pulp chamber volume. Statistical analyses were performed (P < 0.05). RESULTS: Initially, severe damages to the pulp were observed in the Ble and Ble-1RL groups. Ble-1IRL and Ble-3RL groups showed lower inflammation. The bleached groups had a greater amount of mature collagen fibers than the control group. The Ble-3IRL group had a greater number of immature fibers than the Ble group. At 30 days, there was an absence of inflammation and equal proportion of mature and immature collagen fibers. All bleached groups showed a reduction in the volume of the pulp chamber. CONCLUSION: Three consecutive applications of RL and one IRL application can minimize damage to the pulp of bleached teeth, whereas three IRL applications can minimize pulp fibrosis. However, LLLT did not prevent deposition of tertiary dentin. CLINICAL RELEVANCE: This study describes LLLT protocols capable of minimizing inflammation and maturation of collagen fibers in pulp tissue after dental bleaching. However, the protocols proved insufficient for reducing the formation of tertiary dentin in bleached teeth.
Asunto(s)
Terapia por Luz de Baja Intensidad , Blanqueadores Dentales , Blanqueamiento de Dientes , Animales , Colágeno , Pulpa Dental , Dentina , Peróxido de Hidrógeno , Inflamación , Ratas , Ratas Wistar , Blanqueadores Dentales/farmacologíaRESUMEN
In order to regenerate the dental pulp, many strategies have been developed as phototherapy. In the pulp repair, we do not know if gallium-aluminum-arsenide (GaAlAs) laser preserves the primary odontoblasts or stimulates the formation of more dentin matrix when dental pulp is damaged. The aim of the present study was to examine the effect of laser phototherapy (λ780 nm) on vascularization, inflammation, density of the primary odontoblast layer, and formation of reactionary and reparative dentin in the dental pulp by provoking extrusion of the rat incisor. The upper incisors were extruded 3 mm and then repositioned into their original sockets followed by a laser irradiation of the palatal mucosa (λ = 780 nm; p = 70 mW; CW; 4.2 J/cm2; 60 s) every 48 h. Non-traumatized and/or non-irradiated incisors were used as the controls. At 8 and 30 days after surgery, incisors were processed for histological and histomorphometric analysis. Morphological analysis revealed no differences in vascularization between groups, but showed discrete inflammation in some non-irradiated and injured specimens, which correlated with a more irregular reparative dentin. The density of primary odontoblasts in the groups treated with lasers was higher when compared to non-irradiated groups, but no statistically significant difference between groups (p > 0.05). The thickness of the tertiary dentin was increased in both traumatized groups with no statistically significant difference between non-irradiated and irradiated groups (p > 0.05).The present findings revealed that the GaAlAs laser induced small changes on dentin-pulp complex, with more regular dentin matrix in the irradiated dental pulps.
Asunto(s)
Pulpa Dental/patología , Pulpa Dental/efectos de la radiación , Dentina/patología , Dentina/efectos de la radiación , Incisivo/efectos de la radiación , Terapia por Luz de Baja Intensidad , Avulsión de Diente/radioterapia , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Incisivo/patología , Masculino , Odontoblastos/efectos de la radiación , Ratas WistarRESUMEN
The aim of the study is to evaluate histopathologically the amount of tertiary dentin deposit stimulated by three different luting cements. With the informed consent for fifteen patients crown preparation was done for maxillary and mandibular premolar teeth which were scheduled for orthodontic extraction. Copings were cemented with three different luting cements zinc oxide eugenol, glass ionomer and zinc polycarboxylate which were classified as Groups A, B and C respectively. The teeth were later extracted and histopathologically analysed for pulpodentinal reactions using a control study group. Statistically Tukey-HSD procedure was used to identify the significant group and one way ANNOVA was used to analyse the thickness of tertiary dentin among the study group. Tertiary dentin was seen in most of the specimens. When the three groups were compared zinc oxide eugenol helps in stimulation of tertiary dentin formation.
RESUMEN
Regenerative dentistry has rapidly progressed since the advancement of stem cell biology and material science. However, more emphasis has been placed on the success of tissue formation than on how well the newly generated tissue retains the original structure and function. Once dentin is lost, tertiary dentinogenesis can be induced by new odontoblastic differentiation or re-activation of existing odontoblasts. The characteristic morphology of odontoblasts generates the tubular nature of dentin, which is a reservoir of fluid, ions, and a number of growth factors, and protects the inner pulp tissue. Therefore, understanding the dynamic but delicate process of new dentin formation by odontoblasts, or odontoblast-like cells, following dentinal defects is crucial. In this regard, various efforts have been conducted to identify novel molecules and materials that can promote the regeneration of dentin with strength and longevity. In this review, we focus on recent progress in dentin regeneration research with biological molecules identified, and discuss its potential in future clinical applications.
RESUMEN
Inflammatory diseases of the teeth and periodontium are widespread and are frequent secondary diagnoses in head and neck examinations. Periapical inflammation can be the cause of sinusitis or abscess formation in the oral and maxillofacial region. Early detection is important for the patient's course of treatment. For further diagnostics, a dental presentation should be carried out. Dental radiological examinations, such as panoramic radiographs and dental films are used for specific diagnostics. This article is intended to provide an overview of the different stages of caries, the most important inflammatory dental changes and their most frequent differential diagnoses.
Asunto(s)
Caries Dental , Diente , Caries Dental/diagnóstico por imagen , Susceptibilidad a Caries Dentarias , Diagnóstico Diferencial , Humanos , Diente Molar , Radiografía Panorámica , Diente/diagnóstico por imagenRESUMEN
Enforced enrichment of the active promoter marks trimethylation of histone H3 lysine 4 (H3K4me3) and acetylation of histone H3 lysine 27 (H3K27ac) by inhibiting histone demethylases and deacetylases is positively associated with hard tissue formation through the induction of osteo/odontogenic differentiation. However, the key endogenous epigenetic modulator of odontoblasts to regulate the expression of genes coding dentin extracellular matrix (ECM) proteins has not been identified. We focused on nuclear factor (NF)-κB inhibitor ζ (IκBζ), which was originally identified as the transcriptional regulator of NF-κB and recently regarded as the NF-κB-independent epigenetic modulator, and found that IκBζ null mice exhibit a thicker dentin width and narrower pulp chamber, with aged mice having more marked phenotypes. At 6 mo of age, dentin fluorescent labeling revealed significantly accelerated dentin synthesis in the incisors of IκBζ null mice. In the molars of IκBζ null mice, marked tertiary dentin formation adjacent to the pulp horn was observed. Mechanistically, the expression of COL1A2 and COL1A1 collagen genes increased more in the odontoblast-rich fraction of IκBζ null mice than in wild type in vivo, similar to human odontoblast-like cells transfected with small interfering RNA for IκBζ compared with cells transfected with control siRNA in vitro. Furthermore, the direct binding of IκBζ to the COL1A2 promoter suppressed COL1A2 expression and the local active chromatin status marked by H3K4me3. Based on whole-genome identification of H3K4me3 enrichment, ECM and ECM organization-related gene loci were selectively activated by the knockdown of IκBζ, which consistently resulted in the upregulation of these genes. Collectively, this study suggested that IκBζ is the key negative regulator of dentin formation in odontoblasts by inhibiting dentin ECM- and ECM organization-related gene expression through an altered local chromatin status marked by H3K4me3. Therefore, IκBζ is a potential target for epigenetically improving the clinical outcomes of dentin regeneration therapies such as pulp capping.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Dentina , Histonas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diferenciación Celular , Cromatina/metabolismo , Pulpa Dental/metabolismo , Dentina/metabolismo , Dentina Secundaria/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Odontoblastos/metabolismoRESUMEN
The present paper is the first article providing a systematic literature review on the visualization of tertiary dentin influenced by modern bioactive materials in CBCT and micro-CT. Six database searches of studies on tertiary dentin visualization using CBCT produced 622 records in total, and the search of the studies on tertiary dentin using micro-CT produced 502 records in total. The results were thoroughly selected considering the inclusion criteria, and five research papers using CBCT and nine research papers using micro-CT for visualization of tertiary dentin were eventually qualified for the analysis. All the non-randomized and randomized studies presented good and high levels of quality evidence, respectively. Among the bioactive materials used, the most frequently analysed were: MTA, Biodentine dentin matrix hydrogel, Pro Root MTA, and EndoSequence root repair material. The highest thickness of the tertiary dentin was achieved after the use of MTA material in both imaging techniques. The remaining parameters had different results, taking into account the CBCT and micro-CT analysis. The possibilities of the qualitative and quantitative assessment of the particular parameters of tertiary dentin using CBCT and micro-CT techniques were presented and analysed. CBCT and micro-CT analyses can be useful in the assessment of tertiary dentin formed beneath the bioactive material applied during vital pulp treatment. The research argues that the presented results differ depending on the material applied to the pulp, the study duration (4-6 weeks), difference in teeth, species (rats, human), as well as the applied technique and differences in computer software used for the analysis.
RESUMEN
Several novel biomaterials have been developed for dental pulp capping by inducing tertiary dentin formation. The aim of this study was to evaluate the effect of QP5, an amelogenin-based peptide, on the mineralization of dental pulp cells (DPCs) in vitro and in vivo. The cell viability of human DPCs (hDPCs) after treatment with QP5 was determined using the Cell Counting Kit-8 (CCK-8). Migration of hDPCs was assessed using scratch assays, and the pro-mineralization effect was determined using alkaline phosphatase (ALP) staining, alizarin red staining and the expression of mineralization-related genes and proteins. The results showed that QP5 had little effect on the cell viability, and significantly enhanced the migration capability of hDPCs. QP5 promoted the formation of mineralized nodules, and upregulated the activity of ALP, the expression of mRNA and proteins of mineralization-related genes. A pulp capping model in rats was generated to investigate the biological effect of QP5. The results of micro-computed tomography and haematoxylin and eosin staining indicated that the formation of tertiary dentin in QP5-capping groups was more prominent than that in the negative control group. These results indicated the potential of QP5 as a pulp therapy agent.
RESUMEN
Silver diamine fluoride (SDF) is a dental biomaterial used to arrest dental caries. To better understand SDF's mechanism of action, we examined the localization of silver within the tissues of SDF-treated teeth. Carious primary teeth fixed within 2 min of SDF application (SDF-minutes, n = 3), at 3 wk after SDF application in vivo (SDF-weeks, n = 4), and at 2 y after multiple SDF applications in vivo (SDF-multiple, n = 1) were investigated in this study. Carious primary teeth without SDF application (no-SDF, n = 3) served as controls. Mineral density and structural analyses were performed via micro-X-ray computed tomography and scanning electron microscopy. Elemental analyses were performed through X-ray fluorescence microprobe and energy-dispersive X-ray spectroscopic techniques. SDF-treated teeth revealed higher X-ray-attenuated surface and subsurface regions within carious lesions, and similar regions were not present in no-SDF teeth. Regions of higher mineral density correlated with regions of silver abundance in SDF-treated teeth. The SDF penetration depth was approximated to 0.5 ± 0.02 mm and 0.6 ± 0.05 mm (mean ± SD) for SDF-minutes and SDF-weeks specimens, respectively. A higher percentage of dentin tubular occlusion by silver or calcium phosphate particles was observed in primary teeth treated with SDF-weeks as compared with SDF-minutes. Elemental analysis also revealed zinc abundance in carious lesions and around the pulp chamber. SDF-weeks teeth had significantly increased tertiary dentin than SDF-minutes and no-SDF teeth. These results suggest that SDF treatment on primary teeth affected by caries promotes pathologic biomineralization by altering their physicochemical properties, occluding dentin tubules, and increasing tertiary dentin volume. These seemingly serendipitous effects collectively contribute to the cariostatic activity of SDF.
Asunto(s)
Caries Dental , Biomineralización , Cariostáticos , Caries Dental/tratamiento farmacológico , Dentina , Fluoruros Tópicos , Humanos , Compuestos de Amonio Cuaternario/farmacología , Compuestos de PlataRESUMEN
Vital pulp therapy is an important endodontic treatment. Strategies using growth factors and biological molecules are effective in developing pulp capping materials based on wound healing by the dentin-pulp complex. Our group developed biodegradable viscoelastic polymer materials for tissue-engineered medical devices. The polymer contents help overcome the poor fracture toughness of hydroxyapatite (HAp)-facilitated osteogenic differentiation of pulp cells. However, the composition of this novel polymer remained unclear. This study evaluated a novel polymer composite, P(CL-co-DLLA) and HAp, as a direct pulp capping carrier for biological molecules. The biocompatibility of the novel polymer composite was evaluated by determining the cytotoxicity and proliferation of human dental stem cells in vitro. The novel polymer composite with BMP-2, which reportedly induced tertiary dentin, was tested as a direct pulp capping material in a rat model. Cytotoxicity and proliferation assays revealed that the biocompatibility of the novel polymer composite was similar to that of the control. The novel polymer composite with BMP-2-induced tertiary dentin, similar to hydraulic calcium-silicate cement, in the direct pulp capping model. The BMP-2 composite upregulated wound healing-related gene expression compared to the novel polymer composite alone. Therefore, we suggest that novel polymer composites could be effective carriers for pulp capping.
RESUMEN
Hydrogen peroxide photolysis-based antimicrobial chemotherapy that utilizes ultraviolet-A irradiation (UVA-H2O2 photolysis) has been previously proposed as a method of treatment of cariogenic biofilm. Therefore, in the present study, we aimed to assess time-dependent reactions in the dental pulp of rats after UVA-H2O2 photolysis. Maxillary first molars were treated. UVA irradiation (wavelength: 365 nm) with 3 wt% H2O2 was performed for 90 s at a radiant emittance of 500-2000 mW/cm2 on the rats for 3 consecutive days or only 1 day. The animals were sacrificed at Days 1, 3, 7, and 21 after the treatment for the histological evaluation of inflammatory cells and immunohistochemistry of heat shock protein (HSP)-25, a marker of odontoblasts. Tertiary dentin formation was evaluated at Day 21 by histomorphometry and micro-CT analysis. UVA-H2O2 photolysis elicited little infiltration of inflammatory cells, but disturbances in the odontoblast layer and/or presence of localized degenerative tissue were observed on Day 3. This condition was followed by a healing process that was characterized by the reappearance of HSP-25 positive odontoblast-like cells at Day 7 and tertiary dentin formation at Day 21. The amount of tertiary dentin formed was dependent on the intensity of treatment; repeated UVA irradiations of H2O2 at 2000 mW/cm2 resulted in the largest amount of tertiary dentin formation at the pulp horn regions. Our findings suggest that UVA-H2O2 photolysis treatment can be used to treat dental caries clinically because the post-treatment inflammatory reaction was minimal and tertiary dentin formation was substantial, which may prove effective in protecting dental pulp from external irritants. As a cautionary consideration, the radiant emittance of the UVA irradiation should be carefully optimized before clinical application.
Asunto(s)
Antiinfecciosos/farmacología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/efectos de la radiación , Peróxido de Hidrógeno/farmacología , Fotólisis , Rayos Ultravioleta , Animales , Pulpa Dental/metabolismo , Pulpa Dental/microbiología , Proteínas de Choque Térmico HSP27/metabolismo , Peróxido de Hidrógeno/química , Ratas , Factores de TiempoRESUMEN
INTRODUCTION: The primary aim was to explore the criteria used in characterization of reparative cells and mineralized matrices formed after treatment of pulp exposures, and the sequence of relative events. The secondary aim was to evaluate whether the reparative events depend on the experimental model species, age, and therapeutic intervention. METHODS: A literature search of databases using different combinations of the key words was undertaken. Data analysis was based only on studies having histological or histochemical assessment of the pulp tissue responses. The search yielded 86 studies, 47 capping material-based and 39 bioactive application-based experiments, which provided data on morphological or functional characterization of the mineralized matrices and the associated cells. RESULTS: In 64% of capping material-based and 72% of bioactive application-based experiments, a 2-zone mineralized matrix formation (atubular followed by tubular) was detected, whereas characterization of odontoblastic differentiation is provided in only 25.5% and 46.1% of the studies, respectively. In 93.3% of the studies showing odontoblast-like cells, differentiated cells were in association with tubular mineralized matrix formation. Analyses further showed that cell- and matrix-related outcomes do not depend on experimental model species, age, and therapeutic intervention. CONCLUSIONS: The evidence of the reviewed scientific literature is that dental pulp cells secrete a dentin-like matrix of tubular morphology in relation to primitive forms of atubular or osteotypic mineralized matrix. Furthermore, data analysis showed that dental pulp cells express in vivo the odontoblastic phenotype, and secrete matrix in a predentin-like pattern, regardless of the model species, age, and therapeutic intervention used.