RESUMEN
Perchlorate and chlorate are endocrine disruptors considered emerging contaminants (ECs). Both oxyanions are commonly associated with anthropogenic contamination from fertilizers, pesticides, explosives, and disinfection byproducts. However, the soils of the Atacama Desert are the most extensive natural reservoirs of perchlorate in the world, compromising drinking water sources in northern Chile. Field campaigns were carried (2014-2018) to assess the presence of these ECs in the water supply networks of twelve Chilean cities. Additionally, the occurrence of perchlorate, chlorate and other anions typically observed in drinking water matrices of the Atacama Desert (i.e., nitrate, chloride, sulfate) was evaluated using a Spearman correlation analysis to determine predictors for perchlorate and chlorate. High concentrations of perchlorate (up to 114.48 µg L-1) and chlorate (up to 9650 µg L-1) were found in three northern cities. Spatial heterogeneities were observed in the physicochemical properties and anion concentrations of the water supply network. Spearman correlation analysis indicated that nitrate, chloride, and sulfate were not useful predictors for the presence of perchlorate and chlorate in drinking water in Chile. Hence, this study highlights the need to establish systematic monitoring, regulation, and treatment for these EC of drinking water sources in northern Chilean cities for public health protection.
Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Agua Potable/química , Cloratos/análisis , Chile , Nitratos/análisis , Percloratos , Ciudades , Cloruros/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.