Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.530
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39178853

RESUMEN

Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.

2.
Cell ; 173(3): 569-580.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677510

RESUMEN

Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau people ("Sea Nomads") of Southeast Asia live a subsistence lifestyle based on breath-hold diving and are renowned for their extraordinary breath-holding abilities. However, it is unknown whether this has a genetic basis. Using a comparative genomic study, we show that natural selection on genetic variants in the PDE10A gene have increased spleen size in the Bajau, providing them with a larger reservoir of oxygenated red blood cells. We also find evidence of strong selection specific to the Bajau on BDKRB2, a gene affecting the human diving reflex. Thus, the Bajau, and possibly other diving populations, provide a new opportunity to study human adaptation to hypoxia tolerance. VIDEO ABSTRACT.


Asunto(s)
Adaptación Fisiológica , Contencion de la Respiración , Buceo , Tamaño de los Órganos , Hidrolasas Diéster Fosfóricas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Pueblo Asiatico , Eritrocitos/citología , Etnicidad , Femenino , Variación Genética , Genómica , Humanos , Hipoxia , Indonesia/etnología , Pulmón , Masculino , Persona de Mediana Edad , Oxígeno/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Bazo/fisiología , Población Blanca , Adulto Joven
3.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720451

RESUMEN

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacología
4.
Genes Dev ; 35(5-6): 367-378, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602873

RESUMEN

Thyroid hormones (THs) are powerful regulators of metabolism with major effects on body weight, cholesterol, and liver fat that have been exploited pharmacologically for many years. Activation of gene expression by TH action is canonically ascribed to a hormone-dependent "switch" from corepressor to activator binding to thyroid hormone receptors (TRs), while the mechanism of TH-dependent repression is controversial. To address this, we generated a mouse line in which endogenous TRß1 was epitope-tagged to allow precise chromatin immunoprecipitation at the low physiological levels of TR and defined high-confidence binding sites where TRs functioned at enhancers regulated in the same direction as the nearest gene in a TRß-dependent manner. Remarkably, although positive and negative regulation by THs have been ascribed to different mechanisms, TR binding was highly enriched at canonical DR4 motifs irrespective of the transcriptional direction of the enhancer. The canonical NCoR1/HDAC3 corepressor complex was reduced but not completely dismissed by TH and, surprisingly, similar effects were seen at enhancers associated with negatively as well as positively regulated genes. Conversely, coactivator CBP was found at all TH-regulated enhancers, with transcriptional activity correlating with the ratio of CBP to NCoR rather than their presence or absence. These results demonstrate that, in contrast to the canonical "all or none" coregulator switch model, THs regulate gene expression by orchestrating a shift in the relative binding of corepressors and coactivators.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Receptores beta de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Ratones , Modelos Animales , Unión Proteica , Receptores beta de Hormona Tiroidea/genética
5.
Am J Hum Genet ; 111(6): 1114-1124, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38688277

RESUMEN

Papillary thyroid cancer (PTC) is the most common endocrine malignancy. 10% to 15% of individuals show familial clustering with three or more affected members, but the factors underlying this risk are unknown. In a group of recently studied individuals with POT1 pathogenic variants and ultra-long telomere length, PTC was the second most common solid tumor. We tested whether variants in POT1 and four other telomere-maintenance genes associated with familial cancer underlie PTC susceptibility. Among 470 individuals, we identified pathogenic or likely pathogenic variants in three genes encoding telomere-binding proteins: POT1, TINF2, and ACD. They were found in 4.5% and 1.5% of familial and unselected cases, respectively. Individuals harboring these variants had ultra-long telomere length, and 15 of 18 (83%) developed other cancers, of which melanoma, lymphoma, and sarcoma were most common. Among individuals with PTC and melanoma, 22% carried a deleterious germline variant, suggesting that a long telomere syndrome might be clinically recognizable. Successive generations had longer telomere length than their parents and, at times, developed more cancers at younger ages. Tumor sequencing identified a single oncogenic driver, BRAF p.Val600Glu, in 10 of 10 tumors studied, but no telomere-maintenance mechanism, including at the TERT promoter. These data identify a syndromic subset of PTCs with locus heterogeneity and telomere lengthening as a convergent mechanism. They suggest these germline variants lower the threshold to cancer by obviating the need for an acquired telomere-maintenance mechanism in addition to sustaining the longevity of oncogenic mutations.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Complejo Shelterina , Homeostasis del Telómero , Proteínas de Unión a Telómeros , Telómero , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Proteínas de Unión a Telómeros/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Mutación de Línea Germinal/genética , Masculino , Femenino , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Homeostasis del Telómero/genética , Telómero/genética , Persona de Mediana Edad , Adulto , Proteínas Proto-Oncogénicas B-raf/genética , Anciano , Melanoma/genética , Melanoma/patología , Linaje
6.
Proc Natl Acad Sci U S A ; 121(2): e2308652121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175866

RESUMEN

The hypothalamic-pituitary-thyroid (HPT) axis is fundamental to human biology, exerting central control over energy expenditure and body temperature. However, the consequences of normal physiologic HPT-axis variation in populations without diagnosed thyroid disease are poorly understood. Using nationally representative data from the 2007 to 2012 National Health and Nutrition Examination Survey, we explore relationships with demographic characteristics, longevity, and socio-economic factors. We find much larger variation across age in free T3 than other HPT-axis hormones. T3 and T4 have opposite relationships to mortality: free T3 is inversely related and free T4 is positively related to the likelihood of death. Free T3 and household income are negatively related, particularly at lower incomes. Finally, free T3 among older adults is associated with labor both in terms of unemployment and hours worked. Physiologic TSH/T4 explain only 1.7% of T3 variation, and neither are appreciably correlated to socio-economic outcomes. Taken together, our data suggest an unappreciated complexity of the HPT-axis signaling cascade broadly such that TSH and T4 may not be accurate surrogates of free T3. Furthermore, we find that subclinical variation in the HPT-axis effector hormone T3 is an important and overlooked factor linking socio-economic forces, human biology, and aging.


Asunto(s)
Glándula Tiroides , Triyodotironina , Humanos , Anciano , Longevidad , Estatus Económico , Encuestas Nutricionales , Sistema Hipotálamo-Hipofisario/fisiología , Tirotropina , Demografía , Tiroxina
7.
Proc Natl Acad Sci U S A ; 121(30): e2402560121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39018199

RESUMEN

The key role of a thyroid hormone receptor in determining the maturation and diversity of cone photoreceptors reflects a profound influence of endocrine signaling on the cells that mediate color vision. However, the route by which hormone reaches cones remains enigmatic as cones reside in the retinal photoreceptor layer, shielded by the blood-retina barrier. Using genetic approaches, we report that cone differentiation is regulated by a membrane transporter for thyroid hormone, MCT8 (SLC16A2), in the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier. Mct8-deficient mice display hypothyroid-like cone gene expression and compromised electroretinogram responses. Mammalian color vision is typically facilitated by cone types that detect medium-long (M) and short (S) wavelengths of light but Mct8-deficient mice have a partial shift of M to S cone identity, resembling the phenotype of thyroid hormone receptor deficiency. RPE-specific ablation of Mct8 results in similar shifts in cone identity and hypothyroid-like gene expression whereas reexpression of MCT8 in the RPE in Mct8-deficient mice partly restores M cone identity, consistent with paracrine-like control of thyroid hormone signaling by the RPE. Our findings suggest that in addition to transport of essential solutes and homeostatic support for photoreceptors, the RPE regulates the thyroid hormone signal that promotes cone-mediated vision.


Asunto(s)
Diferenciación Celular , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Células Fotorreceptoras Retinianas Conos , Epitelio Pigmentado de la Retina , Simportadores , Animales , Células Fotorreceptoras Retinianas Conos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/metabolismo , Simportadores/genética , Epitelio Pigmentado de la Retina/metabolismo , Ratones , Hormonas Tiroideas/metabolismo , Electrorretinografía
8.
Proc Natl Acad Sci U S A ; 121(12): e2304866121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483992

RESUMEN

Accelerating the measurement for discrimination of samples, such as classification of cell phenotype, is crucial when faced with significant time and cost constraints. Spontaneous Raman microscopy offers label-free, rich chemical information but suffers from long acquisition time due to extremely small scattering cross-sections. One possible approach to accelerate the measurement is by measuring necessary parts with a suitable number of illumination points. However, how to design these points during measurement remains a challenge. To address this, we developed an imaging technique based on a reinforcement learning in machine learning (ML). This ML approach adaptively feeds back "optimal" illumination pattern during the measurement to detect the existence of specific characteristics of interest, allowing faster measurements while guaranteeing discrimination accuracy. Using a set of Raman images of human follicular thyroid and follicular thyroid carcinoma cells, we showed that our technique requires 3,333 to 31,683 times smaller number of illuminations for discriminating the phenotypes than raster scanning. To quantitatively evaluate the number of illuminations depending on the requisite discrimination accuracy, we prepared a set of polymer bead mixture samples to model anomalous and normal tissues. We then applied a home-built programmable-illumination microscope equipped with our algorithm, and confirmed that the system can discriminate the sample conditions with 104 to 4,350 times smaller number of illuminations compared to standard point illumination Raman microscopy. The proposed algorithm can be applied to other types of microscopy that can control measurement condition on the fly, offering an approach for the acceleration of accurate measurements in various applications including medical diagnosis.


Asunto(s)
Microscopía , Espectrometría Raman , Humanos , Microscopía/métodos , Espectrometría Raman/métodos , Glándula Tiroides , Microscopía Óptica no Lineal , Aprendizaje Automático
9.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191061

RESUMEN

Thyroid tissue, the site of de novo thyroid hormone biosynthesis, is derived from ventral pharyngeal endoderm and defects in morphogenesis are a predominant cause of congenital thyroid diseases. The first molecularly recognizable step of thyroid development is the specification of thyroid precursors in anterior foregut endoderm. Recent studies have identified crucial roles of FGF and BMP signaling in thyroid specification, but the interplay between signaling cues and thyroid transcription factors remained elusive. By analyzing Pax2a and Nkx2.4b expression dynamics in relation to endodermal FGF and BMP signaling activities in zebrafish embryos, we identified a Pax2a-expressing thyroid progenitor population that shows enhanced FGF signaling but lacks Nkx2.4b expression and BMP signaling. Concurrent with upregulated BMP signaling, a subpopulation of these progenitors subsequently differentiates into lineage-committed thyroid precursors co-expressing Pax2a and Nkx2.4b. Timed manipulation of FGF/BMP activities suggests a model in which FGF signaling primarily regulates Pax2a expression, whereas BMP signaling regulates both Pax2a and Nkx2.4b expression. Our observation of similar expression dynamics of Pax8 and Nkx2-1 in mouse embryos suggests that this refined model of thyroid cell specification is evolutionarily conserved in mammals.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glándula Tiroides , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Transducción de Señal/genética , Regulación del Desarrollo de la Expresión Génica , Endodermo/metabolismo , Mamíferos/metabolismo
10.
Development ; 150(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715020

RESUMEN

Thyroid hormone and its receptor TRα1 play an important role in brain development. Several animal models have been used to investigate this function, including mice heterozygous for the TRα1R384C mutation, which confers receptor-mediated hypothyroidism. These mice display abnormalities in several autonomic functions, which was partially attributed to a developmental defect in hypothalamic parvalbumin neurons. However, whether other cell types in the hypothalamus are similarly affected remains unknown. Here, we used single-nucleus RNA sequencing to obtain an unbiased view on the importance of TRα1 for hypothalamic development and cellular diversity. Our data show that defective TRα1 signaling has surprisingly little effect on the development of hypothalamic neuronal populations, but it heavily affects hypothalamic oligodendrocytes. Using selective reactivation of the mutant TRα1 during specific developmental periods, we find that early postnatal thyroid hormone action seems to be crucial for proper hypothalamic oligodendrocyte maturation. Taken together, our findings underline the well-known importance of postnatal thyroid health for brain development and provide an unbiased roadmap for the identification of cellular targets of TRα1 action in mouse hypothalamic development.


Asunto(s)
ARN , Receptores alfa de Hormona Tiroidea , Ratones , Animales , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas , Glándula Tiroides , Hipotálamo/metabolismo
11.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39007597

RESUMEN

Thyroid cancer incidences endure to increase even though a large number of inspection tools have been developed recently. Since there is no standard and certain procedure to follow for the thyroid cancer diagnoses, clinicians require conducting various tests. This scrutiny process yields multi-dimensional big data and lack of a common approach leads to randomly distributed missing (sparse) data, which are both formidable challenges for the machine learning algorithms. This paper aims to develop an accurate and computationally efficient deep learning algorithm to diagnose the thyroid cancer. In this respect, randomly distributed missing data stemmed singularity in learning problems is treated and dimensionality reduction with inner and target similarity approaches are developed to select the most informative input datasets. In addition, size reduction with the hierarchical clustering algorithm is performed to eliminate the considerably similar data samples. Four machine learning algorithms are trained and also tested with the unseen data to validate their generalization and robustness abilities. The results yield 100% training and 83% testing preciseness for the unseen data. Computational time efficiencies of the algorithms are also examined under the equal conditions.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Neoplasias de la Tiroides , Neoplasias de la Tiroides/diagnóstico , Humanos , Aprendizaje Automático , Análisis por Conglomerados
12.
Trends Immunol ; 44(5): 365-371, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37061365

RESUMEN

Graves' disease (GD) and Hashimoto's thyroiditis (HT) are common autoimmune diseases of the thyroid gland, causing hyperthyroidism and hypothyroidism, respectively. Despite their opposing clinical manifestation, they have several enigmatic links. Here, we propose that GD and HT have the same fundamental origin: both diseases are the cost of a beneficial physiological process called autoimmune surveillance of hypersecreting mutants. Autoreactive T cells selectively eliminate mutant cells that hypersecrete the hormones and threaten to become toxic nodules. These T cells can trigger a humoral response in susceptible individuals, leading to the production of antibodies against thyroid antigens. This shared origin can explain similarities in incidence and risk factors between HT and GD, despite their opposite clinical phenotypes.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Graves , Enfermedad de Hashimoto , Tiroiditis Autoinmune , Humanos
13.
Proc Natl Acad Sci U S A ; 120(21): e2219770120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186843

RESUMEN

Processes that regulate size and patterning along an axis must be highly integrated to generate robust shapes; relative changes in these processes underlie both congenital disease and evolutionary change. Fin length mutants in zebrafish have provided considerable insight into the pathways regulating fin size, yet signals underlying patterning have remained less clear. The bony rays of the fins possess distinct patterning along the proximodistal axis, reflected in the location of ray bifurcations and the lengths of ray segments, which show progressive shortening along the axis. Here, we show that thyroid hormone (TH) regulates aspects of proximodistal patterning of the caudal fin rays, regardless of fin size. TH promotes distal gene expression patterns, coordinating ray bifurcations and segment shortening with skeletal outgrowth along the proximodistal axis. This distalizing role for TH is conserved between development and regeneration, in all fins (paired and medial), and between Danio species as well as distantly related medaka. During regenerative outgrowth, TH acutely induces Shh-mediated skeletal bifurcation. Zebrafish have multiple nuclear TH receptors, and we found that unliganded Thrab-but not Thraa or Thrb-inhibits the formation of distal features. Broadly, these results demonstrate that proximodistal morphology is regulated independently from size-instructive signals. Modulating proximodistal patterning relative to size-either through changes to TH metabolism or other hormone-independent pathways-can shift skeletal patterning in ways that recapitulate aspects of fin ray diversity found in nature.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Hormonas Tiroideas/genética , Aletas de Animales/fisiología , Regeneración/fisiología
14.
Dev Biol ; 515: 121-128, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39029570

RESUMEN

Regenerating tissues must remember or interpret their spatial position, using this information to restore original size and patterning. The external skeleton of the zebrafish caudal fin is composed of 18 rays; after any portion of the fin is amputated, position-dependent regenerative growth restores each ray to its original length. We tested for transcriptional differences during regeneration of proximal versus distal tissues and identified 489 genes that differed in proximodistal expression. Thyroid hormone directs multiple aspects of ray patterning along the proximodistal axis, and we identified 364 transcripts showing a proximodistal expression pattern that was dependent on thyroid hormone context. To test what aspects of ray positional identity are directed by extrinsic environental cues versus remembered identity autonomous to the tissue, we transplanted distal portions of rays to proximal environments and evaluated regeneration within the new location. Native regenerating proximal tissue showed robust expression of scpp7, a transcript with thyroid-regulated proximal enrichment; in contrast, regenerating rays originating from transplanted distal tissue showed reduced (distal-like) expression during outgrowth. These distal-to-proximal transplants regenerated far beyond the length of the graft itself, indicating that cues from the proximal environment promoted additional growth. Nonetheless, these transplants initiated regeneration at a much slower rate compared to controls, suggesting memory of distal identity was retained by the transplanted tissue. This early growth retardation caused rays that originated from transplants to grow noticeably shorter than neighboring native rays. While several aspects of fin ray morphology (bifurcation, segment length) were found to be determined by the environment, we found that both regeneration speed and ray length are remembered autonomously by tissues, and that persist through multiple rounds of amputation and regeneration.


Asunto(s)
Aletas de Animales , Regeneración , Proteínas de Pez Cebra , Pez Cebra , Animales , Aletas de Animales/fisiología , Regeneración/fisiología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Hormonas Tiroideas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/fisiología
15.
J Biol Chem ; 300(7): 107477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879014

RESUMEN

Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.


Asunto(s)
Astrocitos , Proliferación Celular , Yodotironina Deyodinasa Tipo II , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Regiones no Traducidas 3' , Astrocitos/metabolismo , Astrocitos/citología , Línea Celular Tumoral , Células HEK293 , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/genética , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética
16.
J Biol Chem ; 300(3): 105767, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367672

RESUMEN

Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.


Asunto(s)
Quinasa de Punto de Control 2 , Síndromes Neoplásicos Hereditarios , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Quinasa de Punto de Control 2/química , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndromes Neoplásicos Hereditarios/genética , Estudios Prospectivos , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Dominios Proteicos , Masculino , Femenino , Persona de Mediana Edad
17.
Hum Mol Genet ; 33(1): 38-47, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37740403

RESUMEN

Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.


Asunto(s)
Neoplasias de la Mama , Glándula Tiroides , Humanos , Femenino , Neoplasias de la Mama/genética , Tirotropina/genética , Tiroxina/genética , Factores de Riesgo , Puntuación de Riesgo Genético
18.
Annu Rev Med ; 74: 75-88, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36151047

RESUMEN

The multifaceted interaction between coronavirus disease 2019 (COVID-19) and the endocrine system has been a major area of scientific research over the past two years. While common endocrine/metabolic disorders such as obesity and diabetes have been recognized among significant risk factors for COVID-19 severity, several endocrine organs were identified to be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). New-onset endocrine disorders related to COVID-19 were reported while long-term effects, if any, are yet to be determined. Meanwhile, the "stay home" measures during the pandemic caused interruption in the care of patients with pre-existing endocrine disorders and may have impeded the diagnosis and treatment of new ones. This review aims to outline this complex interaction between COVID-19 and endocrine disorders by synthesizing the current scientific knowledge obtained from clinical and pathophysiological studies, and to emphasize considerations for future research.


Asunto(s)
COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2 , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Factores de Riesgo
19.
CA Cancer J Clin ; 68(2): 97-105, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29369334

RESUMEN

Incidental thyroid nodules that are found on an imaging study performed for reasons other than thyroid pathology represent a common scenario encountered by health care providers. The initial workup for these nodules comprises a thorough history and physical examination, thyroid function tests, a dedicated thyroid ultrasound, and fine-needle aspiration of any suspicious lesions. Management ranges from observation and reassurance to surgical resection and depends on the cytologic diagnosis. In cases of cytologically indeterminate or discordant nodules, surgical excision (lobectomy) offers a definitive diagnosis, although molecular testing or a reasonable period of observation may be useful as less invasive adjuncts. CA Cancer J Clin 2018;68:97-105. © 2018 American Cancer Society.


Asunto(s)
Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/cirugía , Nódulo Tiroideo/diagnóstico , Biopsia con Aguja Fina , Diagnóstico Diferencial , Humanos , Hallazgos Incidentales , Técnicas de Diagnóstico Molecular , Tomografía de Emisión de Positrones/métodos , Guías de Práctica Clínica como Asunto , Pruebas de Función de la Tiroides , Neoplasias de la Tiroides/patología , Nódulo Tiroideo/patología , Nódulo Tiroideo/cirugía , Ultrasonografía/métodos
20.
CA Cancer J Clin ; 68(1): 55-63, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092098

RESUMEN

Answer questions and earn CME/CNE This is a review of the major changes in the American Joint Committee on Cancer staging manual, eighth edition, for differentiated and anaplastic thyroid carcinoma. All patients younger than 55 years have stage I disease unless they have distant metastases, in which case, their disease is stage II. In patients aged 55 years or older, the presence of distant metastases confers stage IVB, while cases without distant metastases are further categorized based on the presence/absence of gross extrathyroidal extension, tumor size, and lymph node status. Patients aged 55 years or older whose tumor measures 4 cm or smaller (T1-T2) and is confined to the thyroid (N0, NX) have stage I disease, and those whose tumor measures greater than 4 cm and is confined to the thyroid (T3a) have stage II disease regardless of lymph node status. Patients aged 55 years or older whose tumor is confined to the thyroid and measures 4 cm or smaller (T1-T2) with any lymph node metastases present (N1a or N1b) have stage II disease. In patients who demonstrate gross extrathyroidal extension, the disease is considered stage II if only the strap muscles are grossly invaded (T3b); stage III if there is gross invasion of the subcutaneous tissue, larynx, trachea, esophagus, or recurrent laryngeal nerve (T4a); or stage IVA if there is gross invasion of the prevertebral fascia or tumor encasing the carotid artery or internal jugular vein (T4b). The same T definitions will be used for both differentiated and anaplastic thyroid cancer, but the basic premise of the anatomic stage groups will remain the same. CA Cancer J Clin 2018;68:55-63. © 2017 American Cancer Society.


Asunto(s)
Estadificación de Neoplasias/métodos , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/patología , Factores de Edad , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática , Invasividad Neoplásica , Pronóstico , Factores de Riesgo , Análisis de Supervivencia , Carcinoma Anaplásico de Tiroides/mortalidad , Neoplasias de la Tiroides/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA