Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 114: 301-310, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984485

RESUMEN

Our recent data show the valuable potential of TnP for the development of a new and safe anti-inflammatory drug due to its ability to control the traffic and activation of leukocytes in response to inflammation. Although there is considerable knowledge surrounding the cellular mechanisms of TnP, less is known about the mechanistic molecular role of TnP underlying its immunomodulatory functions. Here, we conducted investigations to identify whether miRNAs could be one of the molecular bases of the therapeutic effect of TnP. Using a zebrafish model of neutrophilic inflammation with a combination of genetic gain- and loss-of-function approaches, we showed that TnP treatment was followed by up-regulation of only four known miRNAs, and mature dre-miR-26a-1, herein referred just as miR-26a was the first most highly expressed. The knockdown of miR-26a ubiquitously resulted in a significant reduction of miR-26a in embryos, accompanied by impaired TnP immunomodulatory function observed by the loss of the control of the removal of neutrophils in response to inflammation, while the overexpression increased the inhibition of neutrophilic inflammation promoted by TnP. The striking importance of miR-26a was confirmed when rescue strategies were used (morpholino and mimic combination). Our results identified miR-26a as an essential molecular regulator of the therapeutic action of TnP, and suggest that miR-26a or its targets could be used as promising therapeutic candidates for enhancing the resolution of inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Trastornos Leucocíticos/veterinaria , MicroARNs/genética , Péptidos/farmacología , Animales , Antiinflamatorios/química , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Larva/efectos de los fármacos , Larva/genética , Trastornos Leucocíticos/tratamiento farmacológico , Conformación Proteica , Pez Cebra
2.
Toxicol Rep ; 8: 13-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33364179

RESUMEN

The patented anti-inflammatory peptide TnP had its effectiveness recently confirmed in vivo in a murine model of multiple sclerosis and asthma. In this work, the safety of the TnP was evaluated in investigative toxicology tests using zebrafish (Danio rerio) as a model. We conducted the OECD #236 test to investigate effects of the TnP on the survival, hatching performance, and morphological formation of zebrafish embryos. After determining these endpoints, morphometric analysis termination of locomotion eartbeat rate in zebrafish larvae were evaluated to identify adverse effects such as neurotoxicity and cardiotoxicity. The results highlight a wide therapeutic index for TnP with non-lethal and safe doses rom 1 nM to 10 µM, without causing neurotoxicity or cardiotoxic effect. The low frequencyf abnormalities by TnP was associated with high safety of the molecule and the developing embryo's ability to process and eliminate it. TnP crossed the blood-brain barrier without disturbing the normal architecture of forebrain, midbrain and hindbrain. Our data reinforce the importance of zebrafish as an accurate investigative toxicology model to assess acute toxicity as well as cardiotoxicity and neurotoxicity of molecules in the preclinical phase of development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA