Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(8): 1780-1795.e6, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38843835

RESUMEN

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Elementos de Facilitación Genéticos , Inflamación , Macrófagos , Factores de Transcripción , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Inflamación/inmunología , Inflamación/genética , Elementos de Facilitación Genéticos/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Inmunidad Innata , Humanos
2.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38378891

RESUMEN

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Asunto(s)
Aedes , Virus Zika , Animales , Aedes/virología , Aedes/metabolismo , Femenino , Virus Zika/fisiología , Ratones , Virus del Dengue/fisiología , Proteínas y Péptidos Salivales/metabolismo , Mosquitos Vectores/virología , Proteínas de Insectos/metabolismo , Células Mieloides/virología , Células Mieloides/metabolismo , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Dengue/transmisión , Dengue/virología , Dengue/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética
3.
Circ Res ; 134(5): 505-525, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422177

RESUMEN

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Asunto(s)
Cardiomiopatías , Resistencia a la Insulina , Animales , Ratones , Ratas , Adenosina Trifosfatasas , Arginina , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Antígenos CD36/genética , Fibrosis , Inflamación , Leucina , Lípidos , Lisina , Diana Mecanicista del Complejo 1 de la Rapamicina , Miocitos Cardíacos , Mononucleótido de Nicotinamida , Receptor Toll-Like 4/genética
4.
Circ Res ; 134(8): 970-986, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38456277

RESUMEN

BACKGROUND: While platelets have well-studied hemostatic functions, platelets are immune cells that circulate at the interface between the vascular wall and white blood cells. The physiological implications of these constant transient interactions are poorly understood. Activated platelets induce and amplify immune responses, but platelets may also maintain immune homeostasis in healthy conditions, including maintaining vascular integrity and T helper cell differentiation, meaning that platelets are central to both immune responses and immune quiescence. Clinical data have shown an association between low platelet counts (thrombocytopenia) and immune dysfunction in patients with sepsis and extracorporeal membrane oxygenation, further implicating platelets as more holistic immune regulators, but studies of platelet immune functions in nondisease contexts have had limited study. METHODS: We used in vivo models of thrombocytopenia and in vitro models of platelet and monocyte interactions, as well as RNA-seq and ATAC-seq (assay for transposase-accessible chromatin with sequencing), to mechanistically determine how resting platelet and monocyte interactions immune program monocytes. RESULTS: Circulating platelets and monocytes interact in a CD47-dependent manner to regulate monocyte metabolism, histone methylation, and gene expression. Resting platelet-monocyte interactions limit TLR (toll-like receptor) signaling responses in healthy conditions in an innate immune training-like manner. In both human patients with sepsis and mouse sepsis models, thrombocytopenia exacerbated monocyte immune dysfunction, including increased cytokine production. CONCLUSIONS: Thrombocytopenia immune programs monocytes in a manner that may lead to immune dysfunction in the context of sepsis. This is the first demonstration that sterile, endogenous cell interactions between resting platelets and monocytes regulate monocyte metabolism and pathogen responses, demonstrating platelets to be immune rheostats in both health and disease.


Asunto(s)
Sepsis , Trombocitopenia , Ratones , Animales , Humanos , Monocitos/metabolismo , Trombocitopenia/metabolismo , Plaquetas/metabolismo , Inmunidad , Sepsis/metabolismo , Activación Plaquetaria
5.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326029

RESUMEN

Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.


Asunto(s)
Citocinas , Traumatismos de la Médula Espinal , Ratones , Femenino , Animales , Citocinas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Neuronas/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Médula Espinal/metabolismo , Recuperación de la Función/fisiología
6.
J Biol Chem ; 300(6): 107384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762177

RESUMEN

Antimicrobial resistance poses a serious threat to human health worldwide and its incidence continues to increase owing to the overuse of antibiotics and other factors. Macrolide antibiotics such as erythromycin (EM) have immunomodulatory effects in addition to their antibacterial activity. Long-term, low-dose administration of macrolides has shown clinical benefits in treating non-infectious inflammatory respiratory diseases. However, this practice may also increase the emergence of drug-resistant bacteria. In this study, we synthesized a series of EM derivatives, and screened them for two criteria: (i) lack of antibacterial activity and (ii) ability to suppress tumor necrosis factor-α (TNF-α) production in THP-1 cells stimulated with lipopolysaccharide. Among the 37 synthesized derivatives, we identified a novel 12-membered ring macrolide EM982 that lacked antibacterial activity against Staphylococcus aureus and suppressed the production of TNF-α and other cytokines. The effects of EM982 on Toll-like receptor 4 (TLR4) signaling were analyzed using a reporter assay and Western blotting. The reporter assay showed that EM982 suppressed the activation of transcription factors, NF-κB and/or activator protein 1 (AP-1), in HEK293 cells expressing human TLR4. Western blotting showed that EM982 inhibited the phosphorylation of both IκB kinase (IKK) ß and IκBα, which function upstream of NF-κB, whereas it did not affect the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which act upstream of AP-1. These results suggest that EM982 suppresses cytokine production by inhibiting phosphorylation of IKKß and IκBα, resulting in the inactivation of NF-κB.


Asunto(s)
Citocinas , Quinasa I-kappa B , Inhibidor NF-kappaB alfa , Humanos , Quinasa I-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo , Citocinas/metabolismo , Eritromicina/farmacología , Eritromicina/química , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Macrólidos/farmacología , Macrólidos/química , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
7.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354781

RESUMEN

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Asunto(s)
ADN Mitocondrial , Hipocampo , Depresión Sináptica a Largo Plazo , Receptor Toll-Like 9 , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Hipocampo/metabolismo , Inmunidad Innata , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células HEK293
8.
J Biol Chem ; 300(5): 107249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556084

RESUMEN

Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-ß promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1ß, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues ∼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at ∼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Inmunidad Innata , Receptor Toll-Like 3 , Proteínas de Motivos Tripartitos , Animales , Humanos , Ratones , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , FN-kappa B/metabolismo , Fosforilación , Poli I-C/farmacología , Dominios Proteicos , Transducción de Señal , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
9.
Eur J Immunol ; 54(5): e2350715, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446066

RESUMEN

Although a role for TLR2 on T cells has been indicated in prior studies, in vivo stimulation of TLR2 on T cells by Mtb and its impact on Mtb infection has not been tested. Furthermore, it is not known if the enhanced susceptibility to Mtb of Tlr2 gene knockout mice is due to its role in macrophages, T cells, or both. To address TLR2 on T cells, we generated Tlr2fl/flxCd4cre/cre mice, which lack expression of TLR2 on both CD4 and CD8 T cells, to study the in vivo role of TLR2 on T cells after aerosol infection with virulent Mtb. Deletion of TLR2 in CD4+ and CD8+ T cells reduces their ability to be co-stimulated by TLR2 ligands for cytokine production. These include both pro- (IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-10). Deletion of TLR2 in T cells affected control of Mtb in the lungs and spleens of infected mice. This suggests that T-cell co-stimulation by mycobacterial TLR2 ligands in vivo contributes to the control of Mtb infection in the lung and spleen.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Ratones Noqueados , Mycobacterium tuberculosis , Receptor Toll-Like 2 , Tuberculosis , Animales , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología , Ratones Endogámicos C57BL , Pulmón/inmunología , Pulmón/microbiología , Bazo/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Citocinas/metabolismo , Citocinas/inmunología
10.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38526868

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Ratones , Humanos , Receptor Toll-Like 4/genética , Receptor PAR-2/genética , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Antivirales/farmacología , Inhibidores de Serina Proteinasa/farmacología , Inflamación , Serina , Serina Endopeptidasas/genética
11.
FASEB J ; 38(13): e23781, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941212

RESUMEN

Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11ß-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11ß-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3ß, activation of NF-κB, and the GSK-3ß-dependent increases of C3, IL-1ß, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3ß-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11ß-HSD1, NF-κB, C3 and IL-1ß, decreased astrocytic p-Ser9GSK-3ß in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3ß/NF-κB signaling.


Asunto(s)
Astrocitos , Glucógeno Sintasa Quinasa 3 beta , Inmunidad Innata , Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Inmunidad Innata/efectos de los fármacos , Ratas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lipopolisacáridos/farmacología , Corticoesteroides/farmacología , Ratas Sprague-Dawley , Células Cultivadas , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Aldosterona/farmacología , Masculino , FN-kappa B/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Corticosterona/farmacología
12.
Exp Cell Res ; 439(1): 114091, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740168

RESUMEN

Resatorvid (TAK-242), a small-molecule inhibitor of Toll-like receptor 4 (TLR4), has the ability to cross the blood-brain barrier (BBB). In this study, we explored the role of TAK-242 on glioblastoma (GBM) invasion, migration, and proneural-mesenchymal transition (PMT). RNA sequencing (RNA-Seq) data and full clinical information of glioma patients were downloaded from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohorts and then analyzed using R language; patients were grouped based on proneural (PN) and mesenchymal (MES) subtypes. Bioinformatics analysis was used to detect the difference in survival and TLR4-pathway expression between these groups. Cell viability assay, wound-healing test, and transwell assay, as well as an intracranial xenotransplantation mice model, were used to assess the functional role of TAK-242 in GBM in vitro and in vivo. RNA-Seq, Western blot, and immunofluorescence were employed to investigate the possible mechanism. TLR4 expression in GBM was significantly higher than in normal brain tissue and upregulated the expression of MES marker genes. Moreover, TAK-242 inhibited GBM progression in vitro and in vivo via linking with PMT, which could be a novel treatment strategy for inhibiting GBM recurrence.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Transición Epitelial-Mesenquimal , Glioblastoma , Transducción de Señal , Sulfonamidas , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Animales , Ratones , Sulfonamidas/farmacología , Transición Epitelial-Mesenquimal/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Invasividad Neoplásica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Ther ; 32(6): 1721-1738, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38566414

RESUMEN

Recombinant adeno-associated viruses (AAVs) allow rapid and efficient gene delivery to the nervous system, are widely used in neuroscience research, and are the basis of FDA-approved neuron-targeting gene therapies. Here we find that an innate immune response to the AAV genome reduces dendritic length and complexity and disrupts synaptic transmission in mouse somatosensory cortex. Dendritic loss is apparent 3 weeks after injection of experimentally relevant viral titers, is not restricted to a particular capsid serotype, transgene, promoter, or production facility, and cannot be explained by responses to surgery or transgene expression. AAV-associated dendritic loss is accompanied by a decrease in the frequency and amplitude of miniature excitatory postsynaptic currents and an increase in the proportion of GluA2-lacking, calcium-permeable AMPA receptors. The AAV genome is rich in unmethylated CpG DNA, which is recognized by the innate immunoreceptor Toll-like receptor 9 (TLR9), and acutely blocking TLR9 preserves dendritic complexity and AMPA receptor subunit composition in AAV-injected mice. These results reveal unexpected impacts of an immune response to the AAV genome on neuronal structure and function and identify approaches to improve the safety and efficacy of AAV-mediated gene delivery in the nervous system.


Asunto(s)
Dendritas , Dependovirus , Vectores Genéticos , Inmunidad Innata , Transmisión Sináptica , Receptor Toll-Like 9 , Animales , Dependovirus/genética , Ratones , Dendritas/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Receptores AMPA/genética , Receptores AMPA/metabolismo , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/inmunología , Genoma Viral
14.
Mol Ther ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39066478

RESUMEN

Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.

15.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683377

RESUMEN

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


Asunto(s)
Linfocitos B , Interferón Tipo I , Transducción de Señal , Bazo , TYK2 Quinasa , Receptor Toll-Like 7 , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Interferón Tipo I/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/citología , Bazo/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-38906273

RESUMEN

BACKGROUND: Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES: Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS: HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS: We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS: These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.

17.
Nano Lett ; 24(25): 7629-7636, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874796

RESUMEN

Vaccination for cancers arising from human papillomavirus (HPV) infection holds immense potential, yet clinical success has been elusive. Herein, we describe vaccination studies involving spherical nucleic acids (SNAs) incorporating a CpG adjuvant and a peptide antigen (E711-19) from the HPV-E7 oncoprotein. Administering the vaccine to humanized mice induced immunity-dependent on the oligonucleotide anchor chemistry (cholesterol vs (C12)9). SNAs containing a (C12)9-anchor enhanced IFN-γ production >200-fold, doubled memory CD8+ T-cell formation, and delivered more than twice the amount of oligonucleotide to lymph nodes in vivo compared to a simple admixture. Importantly, the analogous construct with a weaker cholesterol anchor performed similar to admix. Moreover, (C12)9-SNAs activated 50% more dendritic cells and generated T-cells cytotoxic toward an HPV+ cancer cell line, UM-SCC-104, with near 2-fold greater efficiency. These observations highlight the pivotal role of structural design, and specifically oligonucleotide anchoring strength (which correlates with overall construct stability), in developing efficacious therapeutic vaccines.


Asunto(s)
Vacunas contra el Cáncer , Proteínas E7 de Papillomavirus , Animales , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/administración & dosificación , Ratones , Proteínas E7 de Papillomavirus/inmunología , Proteínas E7 de Papillomavirus/química , Humanos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/inmunología , Ácidos Nucleicos/química , Ácidos Nucleicos/inmunología , ADN/química , ADN/inmunología
18.
J Infect Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716762

RESUMEN

Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin improves the treatment of primary pneumonia or superinfection caused by amoxicillin-sensitive or -resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and -resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. Finally, we developed a mathematical model that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.

19.
J Infect Dis ; 230(1): 188-197, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052722

RESUMEN

The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.


Asunto(s)
Citocinas , Endosomas , Interferón Tipo I , Transducción de Señal , Streptococcus suis , Receptor Toll-Like 2 , Streptococcus suis/inmunología , Streptococcus suis/patogenicidad , Streptococcus suis/metabolismo , Interferón Tipo I/metabolismo , Receptor Toll-Like 2/metabolismo , Citocinas/metabolismo , Animales , Endosomas/metabolismo , Ratones , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/genética , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones Endogámicos C57BL
20.
J Cell Mol Med ; 28(15): e18583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39123292

RESUMEN

In this study, we investigated whether the ability of aucubin to mitigate the pathology of GONFH involves suppression of TLR4/NF-κB signalling and promotion of macrophage polarization to an M2 phenotype. In necrotic bone tissues from GONFH patients, we compared levels of pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages as well as levels of TLR4/NF-κB signalling. In a rat model of GONFH, we examined the effects of aucubin on these parameters. We further explored its mechanism of action in a cell culture model of M1 macrophages. Necrotic bone tissues from GONFH patients contained a significantly increased macrophage M1/M2 ratio, and higher levels of TLR4, MYD88 and NF-κB p65 than bone tissues from patients with hip osteoarthritis. Treating GONFH rats with aucubin mitigated bone necrosis and demineralization as well as destruction of trabecular bone and marrow in a dose-dependent manner, based on micro-computed tomography. These therapeutic effects were associated with a decrease in the overall number of macrophages, decrease in the proportion of M1 macrophages, increase in the proportion of M2 macrophages, and downregulation of TLR4, MYD88 and NF-κB p65. These effects in vivo were confirmed by treating cultures of M1 macrophage-like cells with aucubin. Aucubin mitigates bone pathology in GONFH by suppressing TLR4/NF-κB signalling to shift macrophages from a pro- to anti-inflammatory phenotype.


Asunto(s)
Glucósidos Iridoides , Macrófagos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Fenotipo , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Glucósidos Iridoides/farmacología , Transducción de Señal/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratas , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Glucocorticoides/farmacología , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Femenino , Ratas Sprague-Dawley , Persona de Mediana Edad , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA