RESUMEN
Fungus-growing ants depend on a fungal mutualist that can fall prey to fungal pathogens. This mutualist is cultivated by these ants in structures called fungus gardens. Ants exhibit weeding behaviors that keep their fungus gardens healthy by physically removing compromised pieces. However, how ants detect diseases of their fungus gardens is unknown. Here, we applied the logic of Koch's postulates using environmental fungal community gene sequencing, fungal isolation, and laboratory infection experiments to establish that Trichoderma spp. can act as previously unrecognized pathogens of Trachymyrmex septentrionalis fungus gardens. Our environmental data showed that Trichoderma are the most abundant noncultivar fungi in wild T. septentrionalis fungus gardens. We further determined that metabolites produced by Trichoderma induce an ant weeding response that mirrors their response to live Trichoderma. Combining ant behavioral experiments with bioactivity-guided fractionation and statistical prioritization of metabolites in Trichoderma extracts demonstrated that T. septentrionalis ants weed in response to peptaibols, a specific class of secondary metabolites known to be produced by Trichoderma fungi. Similar assays conducted using purified peptaibols, including the two previously undescribed peptaibols trichokindins VIII and IX, suggested that weeding is likely induced by peptaibols as a class rather than by a single peptaibol metabolite. In addition to their presence in laboratory experiments, we detected peptaibols in wild fungus gardens. Our combination of environmental data and laboratory infection experiments strongly support that peptaibols act as chemical cues of Trichoderma pathogenesis in T. septentrionalis fungus gardens.
Asunto(s)
Hormigas , Infección de Laboratorio , Trichoderma , Animales , Hormigas/fisiología , Jardines , Señales (Psicología) , Simbiosis , PeptaibolesRESUMEN
Lemon balm (Melissa officinalis L.) is a valuable medicinal plant, but its growth can be significantly impacted by drought stress. This study aimed to mitigate the adverse effects of water deficit stress on lemon balm biomass by integrating poultry manure compost, poultry manure biochar, NPK fertilizer, Trichoderma harzianum, Thiobacillus thioparus, and elemental sulfur as soil amendments. The experiment was conducted in a greenhouse using a completely randomized design with a factorial arrangement, consisting of three replicates. It included a water deficit stress factor at three levels (95-100%, 75-80%, and 55-60% of field capacity) and a soil amendment treatment factor with eleven different fertilizer levels. Treatments included control (no amendment), NPK fertilizer, poultry manure compost, poultry manure biochar, and combinations of these with T. harzianum, T. thioparus, and elemental sulfur under various water deficit levels. Water deficit stress significantly reduced photosynthetic pigments, gas exchange parameters, chlorophyll fluorescence, relative water content, and antioxidant enzyme activity, while increasing membrane permeability and lipid peroxidation in lemon balm plants. However, the integrated application of organic, biological, and chemical amendments mitigated these negative impacts. The combined treatment of poultry manure compost, poultry manure biochar, NPK fertilizer, T. harzianum, T. thioparus, and elemental sulfur was the most effective in improving the morpho-physiological properties (1.97-60%) and biomass (2.31-2.76 times) of lemon balm under water deficit stress. The results demonstrate the potential of this holistic approach to enhance the resilience of lemon balm cultivation in water-scarce environments. The integration of organic, biological, and chemical amendments can contribute to sustainable agricultural practices by improving plant morphological and physiological properties and plant performance under drought conditions.
Asunto(s)
Fertilizantes , Estiércol , Melissa , Suelo , Melissa/fisiología , Suelo/química , Agricultura/métodos , Carbón Orgánico , Agua/metabolismo , Biomasa , Compostaje/métodos , Clorofila/metabolismo , Deshidratación , SequíasRESUMEN
BACKGROUND: Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS: Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION: Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Asunto(s)
Bipolaris , Hordeum , Hypocreales , Nanopartículas , Titanio , Trichoderma , Hordeum/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
Parasitism is an important lifestyle in the Trichoderma genus but has not been studied in a genus-wide way toward Pythium and Globisporangium hosts. Our approach screened a genus-wide set of 30 Trichoderma species in dual culture assays with two soil-borne Pythium and three Globisporangium plant-parasitic species and used exo-proteomic analyses, with the aim to correlate Trichoderma antagonism with potential strategies for attacking Pythium and Globisporangium. The Trichoderma spp. showed a wide range of antagonism from strong to weak, but the same Trichoderma strain showed similar levels toward all the Pythium and Globisporangium species. The Trichoderma enzymes from strong (Trichoderma asperellum, Trichoderma atroviride, and Trichoderma virens), moderate (Trichoderma cf. guizhouense and Trichoderma reesei), and weak (Trichoderma parepimyces) antagonists were induced by the autoclaved mycelia of one of the screened Pythium species, Pythium myriotylum. The variable proportions of putative cellulases, proteases, and redox enzymes suggested diverse as well as shared strategies amongst the antagonists. There was a partial positive correlation between antagonism from microscopy and the cellulase activity induced by autoclaved P. myriotylum mycelia in different Trichoderma species. The deletion of the cellulase transcriptional activator XYR1 in T. reesei led to lower antagonism toward Pythium and Globisporangium. The antagonism of Pythium and Globisporangium appears to be a generic property of Trichoderma as most of the Trichoderma species were at least moderately antagonistic. While a role for cellulases in the antagonism was uncovered, cellulases did not appear to make a major contribution to T. reesei antagonism, and other factors are also likely contributing.IMPORTANCETrichoderma is an important genus widely distributed in nature with broad ecological impacts and applications in the biocontrol of plant diseases. The Pythium and Globisporangium genera of fungus-like water molds include many important soil-borne plant pathogens that cause various diseases. Most of the Trichoderma species showed at least a moderate ability to compete with or antagonize the Pythium and Globisporangium hosts, and microscopy showed examples of parasitism (a slow type of killing) and predation (a fast type of killing). Hydrolytic enzymes such as cellulases and proteases produced by Trichoderma likely contribute to the antagonism. A mutant deficient in cellulase activity had reduced antagonism. Interestingly, Pythium and Globisporangium species contain cellulose in their cell walls (unlike true fungi such as Trichoderma), and the cellulolytic ability of Trichoderma appears beneficial for antagonism of water molds.
Asunto(s)
Celulasas , Enfermedades de las Plantas , Pythium , Trichoderma , Pythium/enzimología , Trichoderma/enzimología , Trichoderma/genética , Celulasas/metabolismo , Celulasas/genética , Enfermedades de las Plantas/microbiología , Antibiosis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/enzimología , Hypocreales/genéticaRESUMEN
Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.
Asunto(s)
Celulasa , Hypocreales , Interferencia de ARN , Celulasa/genética , Celulasa/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodosRESUMEN
All plant populations fluctuate in time. Apart from the dynamics imposed by external forces such as climate, these fluctuations can be driven by endogenous processes taking place within the community. In this study, we aimed to identify potential role of soil-borne microbial communities in driving endogenous fluctuations of plant populations. We combined a unique, 35-yr long abundance data of 11 common plant species from a species-rich mountain meadow with development of their soil microbiome (pathogenic fungi, arbuscular mycorrhizal fungi and oomycetes) observed during 4 yr of experimental cultivation in monocultures. Plant species which abundance fluctuated highly in the field (particularly legumes) accumulated plant pathogens in their soil mycobiome. We also identified increasing proportion of mycoparasitic fungi under highly fluctuating legume species, which may indicate an adaptation of these species to mitigate the detrimental effects of pathogens. Our study documented that long-term fluctuations in the abundance of plant species in grassland communities can be explained by the accumulation of plant pathogens in plant-soil microbiome. By contrast, we found little evidence of the role of mutualists in plant population fluctuations. These findings offer new insights for understanding mechanisms driving both long-term vegetation dynamics and patterns of species coexistence and richness.
Asunto(s)
Fabaceae , Pradera , Microbiota , Microbiología del Suelo , Fabaceae/microbiología , Fabaceae/fisiología , Hongos/fisiología , Factores de TiempoRESUMEN
A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.
Asunto(s)
Óxido Nítrico , Simbiosis , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Bacterias/metabolismo , Hemoglobinas/metabolismoRESUMEN
Trichoderma harzianum T4 is a soil fungus that plays an important role in the biological control of plant diseases. The aim of this study was to functionally characterize the ß-1,6-glucanase gene Neg1 in T. harzianum T4 and to investigate the effect of its overexpression on biocontrol traits, especially antagonism against pathogenic fungi. We found that overexpression of Neg1 did not affect growth of T. harzianum but enhanced sporulation of T. harzianum T4 cultures. Generally, spores are closely related to the defense ability of defense fungi and can assist their proliferation and improve their colonization ability. Secondly, overexpression of Neg1 also increased the secretion level of various hydrolytic enzymes and enhanced the antagonistic ability against phytopathogenic fungi of Fusarium spp. The results suggest that Neg1 is a key gene for improving the biocontrol effect of T. harzianum T4, which contributes to a better understanding of the mechanism of action of T. harzianum T4 as a fungal biocontrol agent.
Asunto(s)
Antibiosis , Fusarium , Enfermedades de las Plantas , Esporas Fúngicas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fusarium/genética , Fusarium/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Control Biológico de Vectores , Agentes de Control Biológico/metabolismo , Trichoderma/genética , Trichoderma/fisiología , Trichoderma/metabolismoRESUMEN
Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.
Asunto(s)
Ascomicetos , Lactuca , Filogenia , Enfermedades de las Plantas , Lactuca/microbiología , Ascomicetos/genética , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rizosfera , Antibiosis , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/aislamiento & purificación , Microbiología del Suelo , Trichoderma/genética , Trichoderma/aislamiento & purificación , Trichoderma/fisiología , Trichoderma/metabolismoRESUMEN
Trichoderma afroharzianum (Hypocreales) is known as an important mycoparasite and biocontrol fungus and feeds on fungal material by parasitizing other fungi. Recent studies indicate that this species is also an ear rot pathogen in Europe. Here, the complete mitochondrial genome of three T. afroharzianum strains was sequenced using next-generation sequencing and comparatively characterized by the reported Trichoderma mitogenomes. T. afroharzianum mitogenomes were varying between 29 511 bp and 29 517 bp in length, with an average A + T content of 72.32%. These mitogenomes contain 14 core protein coding genes (PCGs), 22 tRNAs, two rRNAs, one gene encoding the ribosomal protein S3, and three or four genes including conserved domains for the homing endonucleases (HEGs; GIY-YIG type and LAGLIDADG type). All PCGs are initiated by ATG codons, except for atp8, and all are terminated with TAA. A significant correlation was observed between nucleotide composition and codon preference. Four introns belonging to the group I intron class were predicted, accounting for about 14.54% of the size of the mitogenomes. Phylogenetic analyses confirmed the positions of T. afroharzianum strains within the genus of Trichoderma and supported a sister group relationship between T. afroharzianum and T. simmonsii. The recovered trees also supported the monophyly of all included families and of the genus of Acremonium. The characterization of mitochondrial genome of T. afroharzianum contributes to the understanding of phylogeny and evolution of Hypocreales.
Asunto(s)
Genoma Mitocondrial , Filogenia , Trichoderma , Trichoderma/genética , Trichoderma/clasificación , Evolución Molecular , Composición de Base , ARN de Transferencia/genética , Intrones , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
BACKGROUND: Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS: Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS: Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 µmol guaiacol and 3.82 µmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION: Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.
Asunto(s)
Compuestos Azo , Colorantes , Lacasa , Temperatura , Lacasa/metabolismo , Lacasa/química , Lacasa/aislamiento & purificación , Compuestos Azo/metabolismo , Colorantes/metabolismo , Colorantes/química , Cinética , Concentración de Iones de Hidrógeno , Rojo Congo/metabolismo , Concentración Osmolar , Hypocreales/enzimología , Hypocreales/metabolismo , Biodegradación Ambiental , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificaciónRESUMEN
BACKGROUND: Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS: To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION: This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.
Asunto(s)
Celulasa , Glucanos , Hypocreales , Trichoderma , Celobiosa/metabolismo , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Celulosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Celulasa/metabolismo , Azúcares/metabolismo , Oligosacáridos/metabolismo , Trichoderma/metabolismoRESUMEN
BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.
Asunto(s)
Hypocreales , Leucemia , Neoplasias , Trichoderma , Humanos , Lisina , Apoptosis , Leucemia/tratamiento farmacológico , NecrosisRESUMEN
BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.
Asunto(s)
Celulasa , Hypocreales , Trichoderma , Celulasa/metabolismo , Lactosa/metabolismo , Reproducibilidad de los Resultados , Biotecnología , Trichoderma/metabolismoRESUMEN
The root-knot nematode (RKN) causes significant yield loss in tomatoes. Understanding the interaction of biocontrol agents (BCAs)-nematicides-soil microbiomes and RKNs is essential for enhancing the efficacy of biocontrol agents and nematicides to curb RKN damage to crops. The present study aimed to evaluate the in vitro effectiveness of BACa and nematicide against RKN and to apply the amplicon sequencing to assess the interaction of Bacillus velezensis (VB7) and Trichoderma koningiopsis (TK) against RKNs. Metagenomic analysis revealed the relative abundance of three phyla such as Proteobacteria (42.16%), Firmicutes (19.57%), and Actinobacteria (17.69%) in tomato rhizospheres. Those tomato rhizospheres treated with the combined application of B. velezensis VB7 + T. koningiopsis TK and RKN had a greater frequency of diversity and richness than the control. RKN-infested tomato rhizosphere drenched with bacterial and fungal antagonists had the maximum diversity index of bacterial communities. A strong correlation with a maximum number of interconnection edges in the phyla Proteobacteria, Firmicutes, and Actinobacteria was evident in soils treated with both B. velezensis VB7 and T. koningiopsis TK challenged against RKN in infected soil. The present study determined a much greater diversity of bacterial taxa observed in tomato rhizosphere soils treated with B. velezensis VB7 and T. koningiopsis TK than in untreated soil. It is suggested that the increased diversity and abundance of bacterial communities might be responsible for increased nematicidal properties in tomato plants. Hence, the combined applications of B. velezensis VB7 and T. koningiopsis TK can enhance the nematicidal action to curb RKN infecting tomatoes.
Asunto(s)
Bacillus , Control Biológico de Vectores , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Solanum lycopersicum , Animales , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Bacillus/genética , Bacillus/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Trichoderma/fisiología , Trichoderma/genética , Tylenchoidea/fisiología , Microbiota , Antinematodos/farmacología , Agentes de Control Biológico/farmacología , Bacterias/genética , Bacterias/clasificaciónRESUMEN
AIMS: Determine the wheat rhizosphere competence of Trichoderma gamsii strain A5MH and in planta suppression of the Pythium root and Fusarium crown rot pathogens Globisporangium irregulare and Fusarium pseudograminearum. METHODS AND RESULTS: Wheat was continuously cropped (eight years) at a minimum tillage, low growing season rainfall (GSR ≤ 170 mm) site shown as highly conducive to Pythium root and Fusarium crown rots. Root isolation frequency (RIF) and qPCR were used to determine the rhizosphere dynamics of strain A5MH and the target pathogens at tillering, grain harvest, and in postharvest stubble over the final 2 years. Strain A5MH actively colonized the wheat rhizosphere throughout both growing seasons, had high root abundance at harvest [log 4.5 genome copies (GC) g-1] and persisted in standing stubble for at least 293-d postinoculation. Globisporangium irregulare was most abundant in roots at tillering, whereas F. pseudograminearum was only abundant at harvest and up to 9-fold greater in the drier, second year (GSR 105 mm). Strain A5MH decreased RIF of both pathogens by up to 40%, root abundance of G. irregulare by 100-fold, and F. pseudogaminearum by 700-fold, but was ineffective against crown rot in the second year when pathogen abundance was >log 6.0 GC g-1 root. Strain A5MH increased crop emergence and tillering biomass by up to 40%. CONCLUSIONS: Further trials are required to determine if the A5MH-induced pathogen suppression translates to yield improvements in higher rainfall regions where non-cereal rotations reduce crown rot inoculum.
Asunto(s)
Fusarium , Hypocreales , Pythium , Estaciones del Año , Triticum , Fusarium/genética , Rizosfera , Enfermedades de las Plantas/prevención & control , Grano ComestibleRESUMEN
The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.
Asunto(s)
Compostaje , Trichoderma , Suelo , Fertilizantes/análisis , Trichoderma/genética , Genes Bacterianos , Rizosfera , Virulencia , Bacterias , Antibacterianos/farmacología , Estiércol/análisis , Estiércol/microbiología , Microbiología del SueloRESUMEN
Trichoderma reesei displays a high capability to produce extracellular proteins and therefore is used as a platform for the expression of heterologous genes. In a previous study, an expression cassette with the constitutive tef1 promoter and the cbh1 terminator compatible with flow cytometry analysis was developed. Independent transformants obtained by a random integration into the genome of a circular plasmid containing the expression cassette showed a wide range of fluorescence levels. Whole genome sequencing was conducted on eight of the transformed strains using two next-generation sequencing (NGS) platforms: Illumina paired-end sequencing and Oxford Nanopore. In all strains, the expression plasmid was inserted at the same position in the genome, i.e., upstream of the tef1 gene, indicating an integration by homologous recombination. The different levels of fluorescence observed correspond to different copy numbers of the plasmid. Overall, the integration of a circular plasmid with the green fluorescence protein (egfp) transgene under the control of tef1 promoter favors multicopy integration and allows over-production of this heterologous protein on glucose. In conclusion, an expression system based on using the tef1 promotor could be one of the building blocks for improving high-value heterologous protein production by increasing the copy number of the encoding genes into the genome of the platform strain. KEY POINTS: ⢠Varied eGFP levels from tef1 promoter and cbh1 terminator expression. ⢠Whole genome sequencing on short and long reads platforms reveals various plasmid copy numbers in strains. ⢠Plasmids integrate at the same genomic site by homologous recombination in all strains.
Asunto(s)
Proteínas Fluorescentes Verdes , Hypocreales , Plásmidos , Regiones Promotoras Genéticas , Plásmidos/genética , Hypocreales/genética , Hypocreales/metabolismo , Proteínas Fluorescentes Verdes/genética , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Recombinación Homóloga , Secuenciación Completa del Genoma , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Dosificación de GenRESUMEN
The advancement of fungal biocontrol agents depends on replacing cereal grains with low-cost agro-industrial byproducts for their economical mass production and development of stable formulations. We propose an innovative approach to develop a rice flour-based formulation of the beneficial biocontrol agent Trichoderma asperelloides CMAA1584 designed to simulate a micro-bioreactor within the concept of full biorefinery process, affording in situ conidiation, extended shelf-life, and effective control of Sclerotinia sclerotiorum, a devastating pathogen of several dicot agricultural crops worldwide. Rice flour is an inexpensive and underexplored byproduct derived from broken rice after milling, capable of sustaining high yields of conidial production through our optimized fermentation-formulation route. Conidial yield was mainly influenced by nitrogen content (0.1% w/w) added to the rice meal coupled with the fermentor type. Hydrolyzed yeast was the best nitrogen source yielding 2.6 × 109 colony-forming units (CFU)/g within 14 days. Subsequently, GControl, GLecithin, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru formulations were obtained by extrusion followed by air-drying and further assessed for their potential to induce secondary sporulation in situ, storage stability, and efficacy against Sclerotinia. GControl, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru stood out with the highest number of CFU after sporulation upon re-hydration on water-agar medium. Shelf-life of formulations GControl and GBentonite remained consistent for > 3 months at ambient temperature, while in GBentonite and GOrganic compost+Break-Thru formulations remained viable for 24 months during refrigerated storage. Formulations exhibited similar efficacy in suppressing the myceliogenic germination of Sclerotinia irrespective of their concentration tested (5 × 104 to 5 × 106 CFU/g of soil), resulting in 79.2 to 93.7% relative inhibition. Noteworthily, all 24-month-old formulations kept under cold storage successfully suppressed sclerotia. This work provides an environmentally friendly bioprocess method using rice flour as the main feedstock to develop waste-free granular formulations of Trichoderma conidia that are effective in suppressing Sclerotinia while also improving biopesticide shelf-life. KEY POINTS: ⢠Innovative "bioreactor-in-a-granule" system for T. asperelloides is devised. ⢠Dry granules of aerial conidia remain highly viable for 24 months at 4 °C. ⢠Effective control of white-mold sclerotia via soil application of Trichoderma-based granules.
Asunto(s)
Ascomicetos , Reactores Biológicos , Fermentación , Oryza , Esporas Fúngicas , Reactores Biológicos/microbiología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Oryza/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Nitrógeno/metabolismo , Hypocreales/metabolismo , Hypocreales/crecimiento & desarrollo , Agentes de Control Biológico/química , Trichoderma/metabolismo , Trichoderma/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & controlRESUMEN
In this study, the effect of polyethylene glycol 8000 (PEG8000) stress on cellulase biosynthesis in Trichoderma reesei CICC2626 via calcium signaling was investigated, and a plausible mechanism by which intracellular Ca2+ regulates the transcription of cellulase genes was proposed. The results indicated that the total cellulase (filter paper-hydrolyzing activity [FPase]), endoglucanase (carboxymethyl cellulase activity [CMCase]), and ß-glucosidase activities of the strain were 1.3-, 1.2-, and 1.3-fold higher than those of the control (no PEG8000 addition) at a final concentration of 1.5% (w/v) PEG8000. Moreover, the transcriptional levels of cellulase genes, protein concentrations, and biomass increased. With the synergistic use of commercial cellulase and T. reesei CICC2626 cellulase to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 372.7 mg/g, and the cellulose content (22.7%, 0.32 g) was significantly lower than the initial content (62.5%, 1.88 g). Transcriptome data showed that 12 lignocellulose degradation-related genes were significantly upregulated in the presence of 1.5% PEG8000. Furthermore, the addition of Ca2+ inhibitors and deletion of crz1 (calcineurin-responsive zinc finger 1-encoding gene, which is related to the calcium signaling pathway) demonstrated that calcium signaling plays a dominant role in PEG8000-induced cellulase genes overexpression. These results revealed a link between PEG8000 induction and calcium signaling transduction in T. reesei CICC2626. Moreover, this study also provides a novel inducer for enhanced cellulase production. KEY POINTS: ⢠Cellulase biosynthesis in Trichoderma reesei could be enhanced by PEG8000 ⢠PEG8000 could induce a cytosolic Ca2+ burst in Trichoderma reesei ⢠The activated calcium signaling was involved in cellulase biosynthesis.