Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Immunother Cancer ; 12(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39237260

RESUMEN

OBJECTIVE: Pancreatic cancer is an incurable malignant disease with extremely poor prognosis and a complex tumor microenvironment. We sought to characterize the role of Annexin A1 (ANXA1) in pancreatic cancer, including its ability to promote efferocytosis and antitumor immune responses. METHODS: The tumor expression of ANXA1 and cleaved Caspase-3 (c-Casp3) and numbers of tumor-infiltrating CD68+ macrophages in 151 cases of pancreatic cancer were examined by immunohistochemistry and immunofluorescence. The role of ANXA1 in pancreatic cancer was investigated using myeloid-specific ANXA1-knockout mice. The changes in tumor-infiltrating immune cell populations induced by ANXA1 deficiency in macrophages were assessed by single-cell RNA sequencing and flow cytometry. RESULTS: ANXA1 expression in pancreatic cancer patient samples correlated with the number of CD68+ macrophages. The percentage of ANXA1+ tumor-infiltrating macrophages negatively correlated with c-Casp3 expression and was significantly associated with worse survival. In mice, myeloid-specific ANXA1 deficiency inhibited tumor growth and was accompanied by the accumulation of apoptotic cells in pancreatic tumor tissue caused by inhibition of macrophage efferocytosis, which was dependent on cGAS-STING pathway-induced type I interferon signaling. ANXA1 deficiency significantly remodeled the intratumoral lymphocyte and macrophage compartments in tumor-bearing mice by increasing the number of effector T cells and pro-inflammatory macrophages. Furthermore, combination therapy of ANXA1 knockdown with gemcitabine and anti-programmed cell death protein-1 antibody resulted in synergistic inhibition of pancreatic tumor growth. CONCLUSION: This research uncovers a novel role of macrophage ANXA1 in pancreatic cancer. ANXA1-mediated regulation of efferocytosis by tumor-associated macrophages promotes antitumor immune response via STING signaling, suggesting potential treatment strategies for pancreatic cancer.


Asunto(s)
Anexina A1 , Macrófagos , Proteínas de la Membrana , Nucleotidiltransferasas , Neoplasias Pancreáticas , Microambiente Tumoral , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Animales , Humanos , Ratones , Microambiente Tumoral/inmunología , Anexina A1/metabolismo , Anexina A1/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal , Femenino , Masculino , Ratones Noqueados , Eferocitosis
2.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955419

RESUMEN

BACKGROUND: Patients with mismatch repair-deficient (MMRd) endometrial cancer (EC) can derive great benefit from immune checkpoint inhibitors (ICI). However not all responses and predictors of primary resistance are lacking. METHODS: We compared the immune tumor microenvironment of MMRd EC ICI-responders (Rs) and ICI non-responders (NRs), using spatial multiplexed immune profiling and unsupervised hierarchical clustering analysis. RESULTS: Overall, NRs exhibited drastically lower CD8+, absent terminally differentiated T cells, lack of mature tertiary lymphoid structures and dendritic cells, as well as loss of human leukocyte antigen class I. However, no single marker could predict R versus NR with confidence. Clustering analysis identified a combination of four immune features that demonstrated that accurately predicted ICI response, with a discriminative power of 92%. Finally, 80% of NRs lacked programmed death-ligand 1, however, 60% exhibited another actionable immune checkpoint (T-cell immunoglobulin and mucin containing protein-3, indoleamine 2,3-dioxygenase 1, or lymphocyte activation gene 3). CONCLUSIONS: These findings underscore the potential of immune tumor microenvironment features for identifying patients with MMRd EC and primary resistance to ICI who should be oriented towards trials testing novel immunotherapeutic combinations.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Neoplasias Endometriales , Inhibidores de Puntos de Control Inmunológico , Humanos , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/inmunología , Neoplasias Endometriales/genética , Microambiente Tumoral , Persona de Mediana Edad , Anciano
3.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908857

RESUMEN

BACKGROUND: The dynamic interplay between tyrosine kinase inhibitors (TKIs) and the tumor immune microenvironment (TME) plays a crucial role in the therapeutic trajectory of non-small cell lung cancer (NSCLC). Understanding the functional dynamics and resistance mechanisms of TKIs is essential for advancing the treatment of NSCLC. METHODS: This study assessed the effects of short-term and long-term TKI treatments on the TME in NSCLC, particularly targeting epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. We analyzed changes in immune cell composition, cytokine profiles, and key proteins involved in immune evasion, such as laminin subunit γ-2 (LAMC2). We also explored the use of aspirin as an adjunct therapy to modulate the TME and counteract TKI resistance. RESULTS: Short-term TKI treatment enhanced T cell-mediated tumor clearance, reduced immunosuppressive M2 macrophage infiltration, and downregulated LAMC2 expression. Conversely, long-term TKI treatment fostered an immunosuppressive TME, contributing to drug resistance and promoting immune escape. Differential responses were observed among various oncogenic mutations, with ALK-targeted therapies eliciting a stronger antitumor immune response compared with EGFR-targeted therapies. Notably, we found that aspirin has potential in overcoming TKI resistance by modulating the TME and enhancing T cell-mediated tumor clearance. CONCLUSIONS: These findings offer new insights into the dynamics of TKI-induced changes in the TME, improving our understanding of NSCLC challenges. The study underscores the critical role of the TME in TKI resistance and suggests that adjunct therapies, like aspirin, may provide new strategies to enhance TKI efficacy and overcome resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Animales , Ratones , Resistencia a Antineoplásicos , Femenino , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Línea Celular Tumoral , Mutación
4.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908854

RESUMEN

BACKGROUND AND AIMS: The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS: De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS: We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS: Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.


Asunto(s)
Antígeno B7-H1 , Fucosiltransferasas , Inmunoterapia , Neoplasias Hepáticas , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Ratones , Animales , Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Escape del Tumor , Microambiente Tumoral , Evasión Inmune , Línea Celular Tumoral
5.
J Immunother Cancer ; 12(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631710

RESUMEN

Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.


Asunto(s)
Neoplasias , Estructuras Linfoides Terciarias , Humanos , Inhibidores de Puntos de Control Inmunológico , Citocinas/metabolismo , Activación de Linfocitos
6.
J Immunother Cancer ; 12(5)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821717

RESUMEN

INTRODUCTION: The tissue immune microenvironment is associated with key aspects of tumor biology. The interaction between the immune system and cancer cells has predictive and prognostic potential across different tumor types. Spatially resolved tissue-based technologies allowed researchers to simultaneously quantify different immune populations in tumor samples. However, bare quantification fails to harness the spatial nature of tissue-based technologies. Tumor-immune interactions are associated with specific spatial patterns that can be measured. In recent years, several computational tools have been developed to increase our understanding of these spatial patterns. TOPICS COVERED: In this review, we cover standard techniques as well as new advances in the field of spatial analysis of the immune microenvironment. We focused on marker quantification, spatial intratumor heterogeneity analysis, cell‒cell spatial interaction studies and neighborhood analyses.


Asunto(s)
Neoplasias , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Animales
7.
J Immunother Cancer ; 12(7)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39067872

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) poses a significant clinical challenge because the long-term benefits of immune checkpoint blockade therapy are limited. A comprehensive understanding of the mechanisms underlying immunotherapy resistance in HCC is imperative for improving patient prognosis. DESIGN: In this study, to systematically investigate the characteristics of cancer-associated fibroblast (CAF) subsets and the dynamic communication among the tumor microenvironment (TME) components regulated by CAF subsets, we generated an HCC atlas by compiling single-cell RNA sequencing (scRNA-seq) datasets on 220 samples from six datasets. We combined spatial transcriptomics with scRNA-seq and multiplexed immunofluorescence to identify the specific CAF subsets in the TME that determine the efficacy of immunotherapy in HCC patients. RESULTS: Our findings highlight the pivotal role of POSTN+ CAFs as potent immune response barriers at specific tumor locations, as they hinder effective T-cell infiltration and decrease the efficacy of immunotherapy. Additionally, we elucidated the interplay between POSTN+ CAFs and SPP1+ macrophages, whereby the former recruits the latter and triggers increased SPP1 expression via the IL-6/STAT3 signaling pathway. Moreover, we demonstrated a spatial correlation between POSTN+ CAFs and SPP1+ macrophages, revealing an immunosuppressive microenvironment that limits the immunotherapy response. Notably, we found that patients with elevated expression levels of both POSTN+ CAFs and SPP1+ macrophages achieved less therapeutic benefit in an immunotherapy cohort. CONCLUSION: Our research elucidates light on the role of a particular subset of CAFs in immunotherapy resistance, emphasizing the potential benefits of targeting specific CAF subpopulations to improve clinical responses to immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Inmunoterapia/métodos , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Ratones
8.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955417

RESUMEN

BACKGROUND: Tertiary lymphoid structures (TLSs) are thought to stimulate antitumor immunity and positively impact prognosis and response to immune checkpoint blockade. In gastric cancers (GCs), however, TLSs are predominantly found in GC with poor prognosis and limited treatment response. We, therefore, hypothesize that immune cell composition and function of TLS depends on tumor location and the tumor immune environment. METHODS: Spatial transcriptomics and immunohistochemistry were used to characterize the phenotype of CD45+ immune cells inside and outside of TLS using archival resection specimens from GC primary tumors and peritoneal metastases. RESULTS: We identified significant intrapatient and interpatient diversity of the cellular composition and maturation status of TLS in GC. Tumor location (primary vs metastatic site) accounted for the majority of differences in TLS maturity, as TLS in peritoneal metastases were predominantly immature. This was associated with higher levels of tumor-infiltrating macrophages and Tregs and less plasma cells compared with tumors with mature TLS. Furthermore, mature TLSs were characterized by overexpression of antitumor immune pathways such as B cell-related pathways, MHC class II antigen presentation while immature TLS were associated with protumor pathways, including T cell exhaustion and enhancement of DNA repair pathways in the corresponding cancer. CONCLUSION: The observation that GC-derived peritoneal metastases often contain immature TLS which are associated with immune suppressive regulatory tumor-infiltrating leucocytes, is in keeping with the lack of response to immune checkpoint blockade and the poor prognostic features of peritoneal metastatic GC, which needs to be taken into account when optimizing immunomodulatory strategies for metastatic GC.


Asunto(s)
Neoplasias Peritoneales , Neoplasias Gástricas , Estructuras Linfoides Terciarias , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/inmunología , Estructuras Linfoides Terciarias/inmunología , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/inmunología , Masculino , Femenino , Microambiente Tumoral
9.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955418

RESUMEN

PURPOSE: Small-cell lung cancer (SCLC) is an aggressive disease with a dismal prognosis. The addition of immune checkpoints inhibitors to standard platinum-based chemotherapy in first-line setting achieves a durable benefit only in a patient subgroup. Thus, the identification of predictive biomarkers is an urgent unmet medical need. EXPERIMENTAL DESIGN: Tumor samples from naive extensive-stage (ES) SCLC patients receiving atezolizumab plus carboplatin-etoposide were analyzed by gene expression profiling and two 9-color multiplex immunofluorescence panels, to characterize the immune infiltrate and SCLC subtypes. Associations of tissue biomarkers with time-to-treatment failure (TTF), progression-free survival (PFS) and overall survival (OS), were assessed. RESULTS: 42 patients were included. Higher expression of exhausted CD8-related genes was independently associated with a longer TTF and PFS while increased density of B lymphocytes correlated with longer TTF and OS. Higher percentage of M2-like macrophages close to tumor cells and of CD8+T cells close to CD4+T lymphocytes correlated with increased risk of TF and longer survival, respectively. A lower risk of TF, disease progression and death was associated with a higher density of ASCL1+tumor cells while the expression of POU2F3 correlated with a shorter survival. A composite score combining the expression of exhausted CD8-related genes, B lymphocyte density, ASCL1 tumor expression and quantification of CD163+macrophages close to tumor cells, was able to stratify patients into high-risk and low-risk groups. CONCLUSIONS: In conclusion, we identified tissue biomarkers and a combined score that can predict a higher benefit from chemoimmunotherapy in ES-SCLC patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatino , Etopósido , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Microambiente Tumoral , Humanos , Carboplatino/uso terapéutico , Carboplatino/administración & dosificación , Carboplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Femenino , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Etopósido/uso terapéutico , Etopósido/farmacología , Etopósido/administración & dosificación , Anciano , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos , Adulto , Estadificación de Neoplasias
10.
J Immunother Cancer ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977328

RESUMEN

BACKGROUND: While anti-programmed cell death protein-1 (PD-1) monotherapy has shown effectiveness in treating lung cancer, its response rate is limited to approximately 20%. Recent research suggests that abnormal lipid metabolism in patients with lung adenocarcinoma may hinder the efficacy of anti-PD-1 monotherapy. METHODS: Here, we delved into the patterns of lipid metabolism in patients with The Cancer Genome Atlas (TCGA)-lung adenocarcinoma (LUAD) and their correlation with the immune microenvironment's cellular infiltration characteristics of the tumor. Furthermore, the lipid metabolism score (LMS) system was constructed, and based on the LMS system, we further performed screening for potential agents targeting lipid metabolism. The mechanism of MK1775 was further validated using RNA sequencing, co-culture technology, and in vivo experiments. RESULTS: We developed an LSM system and identified a potential sensitizing agent, MK1775, which targets lipid metabolism and enhances the effects of anti-PD-1 treatment. Our results demonstrate that MK1775 inhibits tumor progression by influencing lipid crosstalk between tumor cells and tumor-associated macrophages and CD8+T cells, thereby increasing the effectiveness of anti-PD-1 treatment. Further, we found that MK1775 inhibited the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which on one hand downregulated FASN-mediated synthesis of fatty acids (FAs) to inhibit fatty acid oxidation of tumor-associated macrophages, and on the other hand, promoted IRF-mediated secretion of CXCL10 and CXCL11 to facilitate the infiltration of CD8+ T cells. CONCLUSIONS: These findings emphasize the important role of lipid metabolism in shaping the complex tumor microenvironment. By manipulating the intricate intricacies of lipid metabolism within the tumor microenvironment, we can uncover and develop promising strategies to sensitize immunotherapy, potentially revolutionizing cancer treatment approaches.


Asunto(s)
Adenocarcinoma del Pulmón , Inmunoterapia , Metabolismo de los Lípidos , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/inmunología , Inmunoterapia/métodos , Ratones , Animales , Microambiente Tumoral , Línea Celular Tumoral
11.
J Immunother Cancer ; 12(7)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060022

RESUMEN

BACKGROUND: TG6050 was designed as an improved oncolytic vector, combining the intrinsic properties of vaccinia virus to selectively replicate in tumors with the tumor-restricted expression of recombinant immune effectors to modify the tumor immune phenotype. These properties might be of particular interest for "cold" tumors, either poorly infiltrated or infiltrated with anergic T cells. METHODS: TG6050, an oncolytic vaccinia virus encodes single-chain human interleukin-12 (hIL-12) and full-length anti-cytotoxic T-lymphocyte-associated antigen-4 (@CTLA-4) monoclonal antibody. The relevant properties of TG6050 (replication, cytopathy, transgenes expression and functionality) were extensively characterized in vitro. The biodistribution and pharmacokinetics of the viral vector, @CTLA-4 and IL-12, as well as antitumoral activities (alone or combined with immune checkpoint inhibitors) were investigated in several "hot" (highly infiltrated) and "cold" (poorly infiltrated) syngeneic murine tumor models. The mechanism of action was deciphered by monitoring both systemic and intratumoral immune responses, and by tumor transcriptome analysis. The safety of TG6050 after repeated intravenous administrations was evaluated in cynomolgus monkeys, with a focus on the level of circulating IL-12. RESULTS: Multiplication and propagation of TG6050 in tumor cells in vitro and in vivo were associated with local expression of functional IL-12 and @CTLA-4. This dual mechanism translated into a strong antitumoral activity in both "cold" and "hot" tumor models (B16F10, LLC1 or EMT6, CT26, respectively) that was further amplified when combined with anti-programmed cell death protein-1. Analysis of changes in the tumor microenvironment (TME) after treatment with TG6050 showed increases in interferon-gamma, of CD8+T cells, and of M1/M2 macrophages ratio, as well as a drastic decrease of regulatory T cells. These local modifications were observed alongside bolstering a systemic and specific antitumor adaptive immune response. In toxicology studies, TG6050 did not display any observable adverse effects in cynomolgus monkeys. CONCLUSIONS: TG6050 effectively delivers functional IL-12 and @CTLA-4 into the tumor, resulting in strong antitumor activity. The shift towards an inflamed TME correlated with a boost in systemic antitumor T cells. The solid preclinical data and favorable benefit/risk ratio paved the way for the clinical evaluation of TG6050 in metastatic non-small cell lung cancer (NCT05788926 trial in progress).


Asunto(s)
Antígeno CTLA-4 , Interleucina-12 , Virus Oncolíticos , Microambiente Tumoral , Virus Vaccinia , Animales , Virus Vaccinia/genética , Ratones , Antígeno CTLA-4/antagonistas & inhibidores , Humanos , Virus Oncolíticos/inmunología , Femenino , Macaca fascicularis , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Viroterapia Oncolítica/métodos , Neoplasias/terapia , Neoplasias/inmunología
12.
J Immunother Cancer ; 12(7)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060024

RESUMEN

BACKGROUND: Lymphocyte activation gene 3 (LAG-3) has been considered as the next generation of immune checkpoint and a promising prognostic biomarker of immunotherapy. As with programmed cell death protein-1/programmed death-ligand 1 and cytotoxic T-lymphocyte antigen-4 inhibitors, positron emission tomography (PET) imaging strategies could benefit the development of clinical decision-making of LAG-3-related therapy. In this study, we developed and validated 68Ga-labeled cyclic peptides tracers for PET imaging of LAG-3 expression in bench-to-bedside studies. METHODS: A series of LAG-3-targeted cyclic peptides were modified and radiolabeled with 68GaCl3 and evaluated their affinity and specificity, biodistribution, pharmacokinetics, and radiation dosimetry in vitro and in vivo. Furthermore, hu-PBL-SCID (PBL) mice models were constructed to validate the capacity of [68Ga]Ga-CC09-1 for mapping of LAG-3+ lymphocytes infiltrates using longitudinal PET imaging. Lastly, [68Ga]Ga-CC09-1 was translated into the first-in-human studies to assess its safety, biodistribution and potential for imaging of LAG-3 expression. RESULTS: A series of cyclic peptides targeting LAG-3 were employed as lead compounds to design and develop 68Ga-labeled PET tracers. In vitro binding assays showed higher affinity and specificity of [68Ga]Ga-CC09-1 in Chinese hamster ovary-human LAG-3 cells and peripheral blood mononuclear cells. In vivo PET imaging demonstrated better imaging capacity of [68Ga]Ga-CC09-1 with a higher tumor uptake of 1.35±0.33 per cent injected dose per gram and tumor-to-muscle ratio of 17.18±3.20 at 60 min post-injection. Furthermore, [68Ga]Ga-CC09-1 could detect the LAG-3+ lymphocyte infiltrates in spleen, lung and salivary gland of PBL mice. In patients with melanoma and non-small cell lung cancer, primary lesions with modest tumor uptake were observed in [68Ga]Ga-CC09-1 PET, as compared with that of [18F]FDG PET. More importantly, [68Ga]Ga-CC09-1 delineated the heterogeneity of LAG-3 expression within large tumors. CONCLUSION: These findings consolidated that [68Ga]Ga-CC09-1 is a promising PET tracer for quantifying the LAG-3 expression in tumor microenvironment, indicating its potential as a companion diagnostic for patients stratification and therapeutic response monitoring in anti-LAG-3 therapy.


Asunto(s)
Radioisótopos de Galio , Proteína del Gen 3 de Activación de Linfocitos , Péptidos Cíclicos , Tomografía de Emisión de Positrones , Microambiente Tumoral , Humanos , Animales , Ratones , Tomografía de Emisión de Positrones/métodos , Antígenos CD/metabolismo , Femenino , Radiofármacos , Ratones SCID , Línea Celular Tumoral , Distribución Tisular
13.
J Immunother Cancer ; 12(8)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209767

RESUMEN

The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia/métodos , Animales , Biomarcadores de Tumor/genética , Relevancia Clínica
14.
J Immunother Cancer ; 12(8)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214650

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis particularly in the metastatic setting. Treatments with anti-programmed cell death protein-1/programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors (ICI) in combination with chemotherapies have demonstrated promising clinical benefit in metastatic TNBC (mTNBC) but there is still an unmet need, particularly for patients with PD-L1 negative tumors. Mechanisms of resistance to ICIs in mTNBC include the presence of immunosuppressive tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Eganelisib is a potent and selective, small molecule PI3K-γ inhibitor that was shown in preclinical studies to reshape the TME by reducing myeloid cell recruitment to tumors and reprogramming TAMs from an immune-suppressive to an immune-activating phenotype and enhancing activity of ICIs. These studies provided rationale for the clinical evaluation of eganelisib in combination with the anti-PD-L1 atezolizumab and nab-paclitaxel in firstline mTNBC in the phase 2 clinical trial MAcrophage Reprogramming in Immuno-Oncology-3 (MARIO-3, NCT03961698). We present here for the first time, in-depth translational analyses from the MARIO-3 study and supplemental data from eganelisib monotherapy Ph1/b study in solid tumors (MARIO-1, NCT02637531). METHODS: Paired pre-treatment and post-treatment tumor biopsies were analyzed for immunophenotyping by multiplex immunofluorescence (n=11), spatial transcriptomics using GeoMx digital spatial profiling (n=12), and PD-L1 immunohistochemistry, (n=18). Peripheral blood samples were analyzed using flow cytometry and multiplex cytokine analysis. RESULTS: Results from paired tumor biopsies from MARIO-3 revealed gene signatures of TAM reprogramming, immune activation and extracellular matrix (ECM) reorganization. Analysis of PD-L1 negative tumors revealed elevated ECM gene signatures at baseline that decreased after treatment. Gene signatures of immune activation were observed regardless of baseline PD-L1 status and occurred in patients having longer progression-free survival. Peripheral blood analyses revealed systemic immune activation. CONCLUSIONS: This is the first report of translational analyses including paired tumor biopsies from a phase 2 clinical study of the first-in-class PI3K-γ inhibitor eganelisib in combination with atezolizumab and nab-paclitaxel in frontline mTNBC. These results support the mechanism of action of eganelisib as a TAM-reprogramming immunotherapy and support the rationale for combining eganelisib with ICI and chemotherapy in indications with TAM-driven resistance to ICI.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Femenino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Persona de Mediana Edad , Metástasis de la Neoplasia , Piridinas/farmacología , Piridinas/uso terapéutico , Ácidos Picolínicos , Benzotiazoles
15.
J Immunother Cancer ; 12(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719543

RESUMEN

The CCR/L5 axis is known for its role in immune regulation in a variety of settings and has been shown to have dichotomous functions in cancer, influencing both tumor progression and immune responses. Battaglin et al investigated its role using genomic and transcriptomic data from several datasets of patients with advanced colorectal cancer (CRC), including patients treated on CALGB/SWOG 80405, a trial of chemotherapy plus cetuximab versus bevacizumab, as well as a larger population of patients whose CRCs underwent commercially available Caris NGS and CODEai assays. These authors showed that CCR/L5 expression was both prognostic and predictive. They reported that low expression of the CCR/L5 axis was correlated with improved survival broadly, with particular benefit in patients treated with chemotherapy plus cetuximab. They demonstrated that high expression of CCR/L5 was associated with infiltration by negatively prognostic Tregs, M1 and M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. They also showed that increased expression was correlated a wide variety of immune suppressive proteins, including PD-1, PD-L1, PD-L2, CTLA4, CD80, CD86, TIM3, IDO1, LAG3, and IFN-γ. This suggests mechanisms by which CRC resists anti-cancer immune responses. This study enhances our understanding of the role of the CCR/L5 axis in advanced CRC.


Asunto(s)
Quimiocina CCL5 , Neoplasias Colorrectales , Receptores CCR5 , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Receptores CCR5/metabolismo , Receptores CCR5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Metástasis de la Neoplasia
16.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908856

RESUMEN

BACKGROUND: Tertiary lymphoid structures (TLSs) serve as organized lymphoid aggregates that influence immune responses within the tumor microenvironment. This study aims to investigate the characteristics and clinical significance of TLSs and tumor-infiltrating lymphocytes (TILs) in clear cell renal cell carcinoma (ccRCC). METHODS: TLSs and TILs were analyzed comprehensively in 754 ccRCC patients from 6 academic centers and 532 patients from The Cancer Genome Atlas. Integrated analysis was performed based on single-cell RNA-sequencing datasets from 21 ccRCC patients to investigate TLS heterogeneity in ccRCC. Immunohistochemistry and multiplex immunofluorescence were applied. Cox regression and Kaplan-Meier analyses were used to reveal the prognostic significance. RESULTS: The study demonstrated the existence of TLSs and TILs heterogeneities in the ccRCC microenvironment. TLSs were identified in 16% of the tumor tissues in 113 patients. High density (>0.6/mm2) and maturation of TLSs predicted good overall survival (OS) (p<0.01) in ccRCC patients. However, high infiltration (>151) of scattered TILs was an independent risk factor of poor ccRCC prognosis (HR=14.818, p<0.001). The presence of TLSs was correlated with improved progression-free survival (p=0.002) and responsiveness to therapy (p<0.001). Interestingly, the combination of age and TLSs abundance had an impact on OS (p<0.001). Higher senescence scores were detected in individuals with immature TLSs (p=0.003). CONCLUSIONS: The study revealed the contradictory features of intratumoral TLSs and TILs in the ccRCC microenvironment and their impact on clinical prognosis, suggesting that abundant and mature intratumoral TLSs were associated with decreased risks of postoperative ccRCC relapse and death as well as favorable therapeutic response. Distinct spatial distributions of immune infiltration could reflect effective antitumor or protumor immunity in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Linfocitos Infiltrantes de Tumor , Estructuras Linfoides Terciarias , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Estructuras Linfoides Terciarias/inmunología , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/genética , Femenino , Masculino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Pronóstico , Estudios de Cohortes , Anciano
17.
J Immunother Cancer ; 12(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857913

RESUMEN

BACKGROUND: Oropharyngeal squamous cell carcinoma (OPSCC) induced by human papillomavirus (HPV-positive) is associated with better clinical outcomes than HPV-negative OPSCC. However, the clinical benefits of immunotherapy in patients with HPV-positive OPSCC remain unclear. METHODS: To identify the cellular and molecular factors that limited the benefits associated with HPV in OPSCC immunotherapy, we performed single-cell RNA (n=20) and T-cell receptor sequencing (n=10) analyses of tonsil or base of tongue tumor biopsies prior to immunotherapy. Primary findings from our single-cell analysis were confirmed through immunofluorescence experiments, and secondary validation analysis were performed via publicly available transcriptomics data sets. RESULTS: We found significantly higher transcriptional diversity of malignant cells among non-responders to immunotherapy, regardless of HPV infection status. We also observed a significantly larger proportion of CD4+ follicular helper T cells (Tfh) in HPV-positive tumors, potentially due to enhanced Tfh differentiation. Most importantly, CD8+ resident memory T cells (Trm) with elevated KLRB1 (encoding CD161) expression showed an association with dampened antitumor activity in patients with HPV-positive OPSCC, which may explain their heterogeneous clinical outcomes. Notably, all HPV-positive patients, whose Trm presented elevated KLRB1 levels, showed low expression of CLEC2D (encoding the CD161 ligand) in B cells, which may reduce tertiary lymphoid structure activity. Immunofluorescence of HPV-positive tumors treated with immune checkpoint blockade showed an inverse correlation between the density of CD161+ Trm and changes in tumor size. CONCLUSIONS: We found that CD161+ Trm counteracts clinical benefits associated with HPV in OPSCC immunotherapy. This suggests that targeted inhibition of CD161 in Trm could enhance the efficacy of immunotherapy in HPV-positive oropharyngeal cancers. TRIAL REGISTRATION NUMBER: NCT03737968.


Asunto(s)
Inmunoterapia , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Análisis de la Célula Individual , Humanos , Neoplasias Orofaríngeas/inmunología , Neoplasias Orofaríngeas/virología , Neoplasias Orofaríngeas/terapia , Inmunoterapia/métodos , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Subfamilia B de Receptores Similares a Lectina de Células NK
18.
J Immunother Cancer ; 12(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866588

RESUMEN

BACKGROUND: Adoptive cancer immunotherapy, using engineered T-cells, expressing chimeric antigen receptor or autologous tumor infiltrating lymphocytes became, in recent years, a major therapeutic approach for diverse types of cancer. However, despite the transformative potential of adoptive cancer immunotherapy, this field still faces major challenges, manifested by the apparent decline of the cytotoxic capacity of effector CD8+ T cells upon their expansion. To address these challenges, we have developed an ex vivo "synthetic immune niche" (SIN), composed of immobilized CCL21 and ICAM1, which synergistically induce an efficient expansion of antigen-specific CD8+ T cells while retaining, and even enhancing their cytotoxic potency. METHODS: To explore the molecular mechanisms through which a CCL21+ICAM1-based SIN modulates the interplay between the proliferation and cytotoxic potency of antigen-activated and CD3/CD28-activated effector CD8+ T cells, we performed integrated analysis of specific differentiation markers via flow cytometry, together with gene expression profiling. RESULTS: On day 3, the transcriptomic effect induced by the SIN was largely similar for both dendritic cell (DC)/ovalbumin (OVA)-activated and anti-CD3/CD28-activated cells. Cell proliferation increased and the cells exhibited high killing capacity. On day 4 and on, the proliferation/cytotoxicity phenotypes became radically "activation-specific"; The DC/OVA-activated cells lost their cytotoxic activity, which, in turn, was rescued by the SIN treatment. On longer incubation, the cytotoxic activity further declined, and on day7, could not be rescued by the SIN. SIN stimulation following activation with anti-CD3/CD28 beads induced a major increase in the proliferative phenotype while transiently suppressing their cytotoxicity for 2-3 days and fully regaining their killing activity on day 7. Potential molecular regulatory pathways of the SIN effects were identified, based on transcriptomic and multispectral imaging profiling. CONCLUSIONS: These data indicate that cell proliferation and cytotoxicity are negatively correlated, and the interplay between them is differentially regulated by the mode of initial activation. The SIN stimulation greatly enhances the cell expansion, following both activation modes, while displaying high survival and cytotoxic potency at specific time points following stimulation, suggesting that it could effectively reinforce adoptive cancer immunotherapy.


Asunto(s)
Proliferación Celular , Quimiocina CCL21 , Molécula 1 de Adhesión Intercelular , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Quimiocina CCL21/metabolismo , Activación de Linfocitos , Inmunoterapia Adoptiva/métodos , Linfocitos T CD8-positivos/inmunología , Citotoxicidad Inmunológica
19.
J Immunother Cancer ; 12(7)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39053947

RESUMEN

BACKGROUND: Approximately 50% of head and neck squamous cell carcinomas (HNSCC) recur after treatment with curative intent. Immune checkpoint inhibitors are treatment options for recurrent/metastatic HNSCC; however, less than 20% of patients respond. To increase this response rate, it is fundamental to increase our understanding of the spatial tumor immune microenvironment (TIME). METHODS: In total, 53 HNSCC specimens were included. Using a seven-color multiplex immunohistochemistry panel we identified tumor cells, CD163+macrophages, B cells, CD8+T cells, CD4+T helper cells and regulatory T cells (Tregs) in treatment-naive surgical resection specimens (n=29) and biopsies (n=18). To further characterize tumor-infiltrating CD8+T cells, we stained surgical resection specimens (n=12) with a five-color tumor-resident panel including CD103, Ki67, CD8 and pan-cytokeratin. Secretome analysis was performed on matched tumor suspensions (n=11) to measure protein levels. RESULTS: Based on CD8+T cell infiltrates, we identified four different immunotypes: fully infiltrated, stroma-restricted, immune-excluded, and immune-desert. We found higher cytokine levels in fully infiltrated tumors compared with other immunotypes. While the highest immune infiltrates were observed in the invasive margin for all immune cells, CD163+macrophages and Tregs had the highest tendency to infiltrate the tumor center. Within the tumor center, especially B cells stayed at the tumor stroma, whereas CD163+macrophages, followed by T cells, were more often localized within tumor fields. Also, B cells were found further away from other cells and often formed aggregates while T cells and CD163+macrophages tended to be more closely located to each other. Across resection specimens from various anatomical sites within the head and neck, oral cavity tumors exhibited the highest densities of Tregs. Moreover, the distance from B cells and T cells to tumor cells was shortest in oral cavity squamous cell carcinoma (OCSCC), suggesting more interaction between lymphocytes and tumor cells. Also, the fraction of T cells within 10 µm of CD163+macrophages was lowest in OCSCC, indicating fewer myeloid/T-cell suppressive interactions in OCSCC. CONCLUSIONS: We comprehensively described the TIME of HNSCC using a unique data set of resection specimens. We discovered that the composition, as well as the relative localization of immune cells in the TIME, differed in distinct anatomical sites of the head and neck.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Masculino , Femenino , Microambiente Tumoral/inmunología , Persona de Mediana Edad , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Anciano , Macrófagos/inmunología , Macrófagos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
20.
J Immunother Cancer ; 12(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39237261

RESUMEN

The intricate origins, subsets, and characteristics of TCR (T Cell Receptor) s, along with the mechanisms underpinning the antitumor response of tumor-infiltrating T lymphocytes within the tumor microenvironment (TME) remain enigmatic. Recently, the advent of single-cell RNA+TCR-sequencing (scRNA+TCR seq) has revolutionized TME analysis, providing unprecedented insight into the origins, cell subsets, TCR CDR3 compositions, and the expression patterns of response/depletion factors within individual tumor-infiltrating T lymphocytes. Our analysis of the shared scRNA+TCR seq dataset revealed a substantial presence of dual TCR T cells, characterized by clonal hyperplasia and remarkable migratory prowess across various tissues, including blood, normal, peritumoral, and tumor tissues in non-small cell lung cancer patients. Notably, dual TCR CD8+T cells predominantly fell within the CXCL13+subset, displaying potent antitumor activity and a strong preference for tumor tissue residency. Conversely, dual TCR CD4+T cells were predominantly classified as CD5+ or LMNA+subsets, exhibiting a more even distribution across diverse tissue types. By harnessing scRNA+TCR seq and other cutting-edge technologies, we can delve deeper into the effects and mechanisms that regulate the antitumor response or tolerance of dual TCR T cells. This innovative approach holds immense promise in offering fresh perspectives and avenues for advancing research on TIL (Tumor infiltrating lymphocyte)s within the TME.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microambiente Tumoral/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA