Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(16): e70014, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39183544

RESUMEN

End-ischemic normothermic mechanical perfusion (NMP) could provide a curative treatment to reduce cholestatic liver injury from donation after circulatory death (DCD) in donors. However, the underlying mechanism remains elusive. Our previous study demonstrated that air-ventilated NMP could improve functional recovery of DCD in a preclinical NMP rat model. Here, metabolomics analysis revealed that air-ventilated NMP alleviated DCD- and cold preservation-induced cholestatic liver injury, as shown by the elevated release of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and γ-glutamyl transferase (GGT) in the perfusate (p < .05) and the reduction in the levels of bile acid metabolites, including ω-muricholic acid, glycohyodeoxycholic acid, glycocholic acid, and glycochenodeoxycholate (GCDC) in the perfused livers (p < .05). In addition, the expression of the key bile acid metabolism enzyme UDP-glucuronosyltransferase 1A1 (UGT1A1), which is predominantly expressed in hepatocytes, was substantially elevated in the DCD rat liver, followed by air-ventilated NMP (p < .05), and in vitro, this increase was induced by decreased GCDC and hypoxia-reoxygenation in the hepatic cells HepG2 and L02 (p < .05). Knockdown of UGT1A1 in hepatic cells by siRNA aggravated hepatic injury caused by GCDC and hypoxia-reoxygenation, as indicated by the ALT and AST levels in the supernatant. Mechanistically, UGT1A1 is transcriptionally regulated by peroxisome proliferator-activator receptor-γ (PPAR-γ) under hypoxia-physoxia. Taken together, our data revealed that air-ventilated NMP could alleviate DCD- and cold preservation-induced cholestatic liver injury through PPAR-γ/UGT1A1 axis. Based on the results from this study, air-ventilated NMP confers a promising approach for predicting and alleviating cholestatic liver injury through PPAR-γ/UGT1A1 axis.


Asunto(s)
PPAR gamma , Animales , Ratas , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Humanos , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética , Hígado/metabolismo , Hígado/patología , Colestasis/metabolismo , Perfusión , Ratas Sprague-Dawley , Preservación de Órganos/métodos , Trasplante de Hígado
2.
J Biol Chem ; 299(3): 102955, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720308

RESUMEN

Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.


Asunto(s)
Arsénico , Glucuronosiltransferasa , Factor 2 Relacionado con NF-E2 , Receptor X de Pregnano , Animales , Ratones , Animales Recién Nacidos , Arsénico/toxicidad , Bilirrubina/sangre , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Hígado/enzimología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo
3.
Drug Metab Rev ; 56(1): 1-30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38126313

RESUMEN

Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hígado , Humanos , Masculino , Femenino , Animales , Ratas , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Encéfalo/metabolismo , Glucuronosiltransferasa/metabolismo
4.
Arch Toxicol ; 98(3): 837-848, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182911

RESUMEN

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.


Asunto(s)
Clorofenoles , Hígado , Microsomas Hepáticos , Bifenilos Polibrominados , Humanos , Animales , Ratas , Ratones , Perros , Porcinos , Porcinos Enanos/metabolismo , Microsomas Hepáticos/metabolismo , Hígado/metabolismo , Glucuronosiltransferasa/metabolismo , Animales de Laboratorio/metabolismo , Isoformas de Proteínas/metabolismo , Haplorrinos/metabolismo , Cinética , Glucurónidos/metabolismo , Uridina Difosfato/metabolismo
5.
Ecotoxicol Environ Saf ; 269: 115775, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070413

RESUMEN

Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 µg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR. In total of 528 up-regulated genes and 488 down-regulated genes were observed, includes cytochrome P450 and uridine diphosphate (UDP)-glucuronosyltransferase related genes. KEGG analysis showed that chemical carcinogenesis-DNA adducts, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450 pathway was enriched. Common genes from the target genes of microRNAs and differential expression genes are enriched in metabolism of xenobiotics cytochrome P450 pathway. Two miRNAs (dre-miR-146a and miR-212-3p) down regulated their target genes (LOC127510138 and adh5, respectively) which are enriched cytochrome P450 related pathway. The results present that geosmin is genetoxic to grass carp and indicate that cytochrome P450 system and UDP-glucuronosyltransferase play essential roles in biotransformation of geosmin. MicroRNAs regulate the biotransformation of geosmin by targeting specific genes, which contributes to the development of strategies to manage its negative impacts in both natural and artificial environments.


Asunto(s)
Carpas , Enfermedades de los Peces , MicroARNs , Naftoles , Animales , MicroARNs/genética , MicroARNs/metabolismo , Carpas/genética , Carpas/metabolismo , ARN Mensajero , Sistema Enzimático del Citocromo P-450/genética , Agua Dulce , Glucuronosiltransferasa/genética , Uridina Difosfato , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
6.
Biopharm Drug Dispos ; 45(3): 149-158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38886878

RESUMEN

Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.


Asunto(s)
Interacciones Farmacológicas , Flavonoides , Glucuronosiltransferasa , Microsomas Hepáticos , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Humanos , Flavonoides/farmacología , Microsomas Hepáticos/metabolismo , Estradiol/farmacología , Himecromona/farmacología , Propofol/farmacología , Inhibidores Enzimáticos/farmacología
7.
Drug Metab Dispos ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37879848

RESUMEN

Physiologically-based pharmacokinetic (PBPK) modeling has become the established method for predicting human pharmacokinetics (PK) and drug-drug interactions (DDI). The number of drugs cleared by non-CYP enzyme metabolism has increased steadily and to date, there is no consolidated overview of PBPK modeling for drugs cleared by non-CYP enzymes. This review aims to describe the state-of-the-art for PBPK modeling for drugs cleared via non-CYP enzymes, to identify successful strategies, to describe gaps and to provide suggestion to overcome them. To this end, we conducted a detailed literature search and found 58 articles published before the 1st of January 2023 containing 95 examples of clinical PBPK models for 62 non-CYP enzyme substrates. Reviewed articles covered the drug clearance by uridine 5'-diphospho-glucuronosyltransferases (UGTs), aldehyde oxidase (AO), flavin-containing monooxygenases (FMOs), sulfotransferases (SULTs) and carboxylesterases (CES), with UGT2B7, UGT1A9, CES1, FMO3 and AO being the enzymes most frequently involved. In vitro-in vivo extrapolation (IVIVE) of intrinsic clearance and the bottom-up PBPK modeling involving non-CYP enzymes remains challenging. We observed that the middle-out modeling approach was applied in 80% of the cases, with metabolism parameters optimized in 73% of the models. Our review could not identify a standardized approach used for model optimization based on clinical data, with manual optimization employed most frequently. Successful development of models for UGT2B7, UGT1A9, CES1, and FMO3 substrates provides a foundation for other drugs metabolized by these enzymes and guides the way forward in creating PBPK models for other enzymes in these families. Significance Statement Our review charts the rise of PBPK modeling for drugs cleared by non-CYP enzymes. Analyzing 58 articles and 62 non-CYP enzyme substrates, we found that UGTs, AO, FMOs, SULTs, and CES were the main enzyme families involved and that UGT2B7, UGT1A9, CES1, FMO3 and AO are the individual enzymes with the strongest PBPK modeling precedents. Approaches established for these enzymes can now be extended to additional substrates and to drugs metabolized by enzymes that are similarly well characterized.

8.
Toxicol Appl Pharmacol ; 466: 116490, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36963523

RESUMEN

Ripretinib, a tyrosine kinase inhibitor (TKI), is the first FDA approved fourth-line therapy for adults with advanced gastrointestinal stromal tumor (GIST). Studies have shown that several TKIs for treating GIST were potent inhibitors of human UDP-glucosyltransferase (UGTs) enzymes. However, whether ripretinib affects the activity of UGTs remains unclear. The aim of this study was to investigate the effects of ripretinib on major UGT isoforms, as well as to evaluate its potential drug-drug interactions (DDIs) risk caused by the inhibition of UGTs activities. The inhibitory effects and inhibition modes of ripretinib on UGTs were systematically evaluated using high-performance liquid chromatography (HPLC) and enzyme kinetic studies, respectively. Our data showed that ripretinib exhibited potent inhibition against UGT1A1, UGT1A3, UGT1A4, UGT1A7 and UGT1A8. Enzyme kinetic studies indicated that ripretinib was not only a competitive inhibitor of UGT1A1, UGT1A4 and UGT1A7, but also a noncompetitive inhibitor of UGT1A3, as well as a mixed inhibitor of UGT1A8. The prediction results of in vitro-in vivo extrapolation (IVIVE) demonstrated that ripretinib might bring the potential risk of DDIs when combined with substrates of UGT1A1, UGT1A3, UGT1A4, UGT1A7 or UGT1A8. Therefore, special attention should be paid when ripretinib is used in conjunction with other drugs metabolized by UGTs to avoid risk of DDIs in clinic.


Asunto(s)
Tumores del Estroma Gastrointestinal , Microsomas Hepáticos , Humanos , Microsomas Hepáticos/metabolismo , Cinética , Tumores del Estroma Gastrointestinal/metabolismo , Glucuronosiltransferasa/metabolismo , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología
9.
Mol Cell Biochem ; 478(8): 1779-1790, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36571650

RESUMEN

UDP-glucuronosyltransferase (UGT) metabolizes a number of endogenous and exogenous substrates. Renal cells express high amounts of UGT; however, the significance of UGT in patients with renal cell carcinoma (RCC) remains unknown. In this study, we profile the mRNA expression of UGT subtypes (UGT1A6, UGT1A9, and UGT2B7) and their genetic variants in the kidney tissue of 125 Japanese patients with RCC (Okayama University Hospital, Japan). In addition, we elucidate the association between the UGT variants and UGT mRNA expression levels and clinical outcomes in these patients. The three representative genetic variants, namely, UGT1A6 541A > G, UGT1A9 i399C > T, and UGT2B7-161C > T, were genotyped, and their mRNA expression levels in each tissue were determined. We found that the mRNA expression of the three UGTs (UGT1A6, UGT1A9, and UGT2B7) are significantly downregulated in RCC tissues. Moreover, in patients with RCC, the UGT2B7-161C > T variant and high UGT2B7 mRNA expression are significantly correlated with preferable cancer-specific survival (CSS) and overall survival (OS), respectively. As such, the UGT2B7-161C > T variant and UGT2B7 mRNA expression level were identified as significant independent prognostic factors of CSS and CSS/OS, respectively. Taken together, these findings indicate that UGT2B7 has a role in RCC progression and may, therefore, represent a potential prognostic biomarker for patients with RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Riñón/metabolismo , ARN Mensajero/genética , Neoplasias Renales/genética
10.
Xenobiotica ; : 1-49, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966132

RESUMEN

1. Unexpected metabolism could lead to the failure of many late-stage drug candidates or even the withdrawal of approved drugs. Thus, it is critical to predict and study the dominant routes of metabolism in the early stages of research. In this study, we describe the development and validation of a 'WhichEnzyme' model that accurately predicts the enzyme families most likely to be responsible for a drug-like molecule's metabolism. Furthermore, we combine this model with our previously published regioselectivity models for Cytochromes P450, Aldehyde Oxidases, Flavin-containing Monooxygenases, UDP-glucuronosyltransferases and Sulfotransferases - the most important Phase I and Phase II drug metabolising enzymes - and a 'WhichP450' model that predicts the Cytochrome P450 isoform(s) responsible for a compound's metabolism. The regioselectivity models are based on a mechanistic understanding of these enzymes' actions, and use quantum mechanical simulations with machine learning methods to accurately predict sites of metabolism and the resulting metabolites. We train heuristic based on the outputs of the 'WhichEnzyme', 'WhichP450', and regioselectivity models to determine the most likely routes of metabolism and metabolites to be observed experimentally. Finally, we demonstrate that this combination delivers high sensitivity in identifying experimentally reported metabolites and higher precision than other methods for predicting in vivo metabolite profiles.

11.
Ecotoxicol Environ Saf ; 263: 115353, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586199

RESUMEN

UDP-glucuronosyltransferases (UGTs) could transform various exogenous and endogenous compounds, which help detoxification of pesticides in insects. To investigate the role of UGTs in the detoxification metabolism of insecticides in Chironomus kiiensis, CkUGT302M1, CkUGT302N1, CkUGT308N1 and CkUGT36J1 genes were identified with 1449-1599 bp encoding 482-532 amino acids. Four UGT genes shared 40.86∼53.36% identity with other homologous insect species, and expressed in all developmental stages, notably in the larval and adult stages. Expression of CkUGTs was higher in the gastric caecum, midgut and head. Moreover, CkUGTs expression and activity were significantly increased in C. kiiensis larvae in exposure to sublethal concentrations of carbaryl, deltamethrin and phoxim, respectively. To further explore the functions of UGT genes, the CkUGT308N1 was effectively silenced in 4th instar C. kiiensis larvae by RNA interference, which resulted in the mortality of dsCkUGT308N1 treated larvae increased by 71.43%, 111.11% and 62.50% under sublethal doses of carbaryl, deltamethrin and phoxim at the 24-h time point, respectively. The study revealed that the CkUGT308N1 gene in C. kiiensis could contribute to the metabolism of pesticides and provide a scientific basis for evaluating the water pollution of pesticides.


Asunto(s)
Chironomidae , Insecticidas , Animales , Chironomidae/genética , Insecticidas/toxicidad , Carbaril/toxicidad , Larva/genética , Uridina Difosfato/farmacología
12.
Toxicol Mech Methods ; 33(3): 197-205, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35930428

RESUMEN

The adverse effects (diarrhea and neutropenia) of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) are associated with genetic variants of uridine diphosphate glucuronosyltransferase 1A subfamilies (UGT1As). UGT1As are enzymes that metabolize the active form of irinotecan, 7-ethyl-10 hydroxycamptothecin (SN-38), by glucuronidation in the liver. They are widely known as predictive factors of severe adverse effects, such as neutropenia and diarrhea. Some studies have suggested that variants of UGT1As affect SN-38 glucuronidation activities, thus exerting severe adverse effects. We aimed to identify UGT1A isoforms that show SN-38 glucuronidation activity and determine the relationship between UGT1A variants and SN-38 glucuronidation in vitro. We found that UGT1A1 and UGT1A6-UGT1A10 displayed SN-38 glucuronidation activity. Among these, UGT1A1 was the most active. Furthermore, the variants of these isoforms showed decreased SN-38 glucuronidation activity. In our study, we compared the different variants of UGT1As, such as UGT1A1.6, UGT1A1.7, UGT1A1.27, UGT1A1.35, UGT1A7.3, UGT1A8.4, UGT1A10M59I, and UGT1A10T202I, to determine the differences in the reduction of glucuronidation. Our study elucidates the relationship between UGT1A variants and the level of glucuronidation associated with each variant. Therefore, testing can be done before the initiation of irinotecan treatment to predict potential toxicities and adverse effects.


Asunto(s)
Camptotecina , Neutropenia , Humanos , Irinotecán , Camptotecina/toxicidad , Camptotecina/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Diarrea/inducido químicamente , Neutropenia/inducido químicamente
13.
J Biol Chem ; 296: 100722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33932402

RESUMEN

Nicotine is the key addictive constituent of tobacco. It is not a carcinogen, but it drives smoking and the continued exposure to the many carcinogens present in tobacco. The investigation into nicotine biotransformation has been ongoing for more than 60 years. The dominant pathway of nicotine metabolism in humans is the formation of cotinine, which occurs in two steps. The first step is cytochrome P450 (P450, CYP) 2A6-catalyzed 5'-oxidation to an iminium ion, and the second step is oxidation of the iminium ion to cotinine. The half-life of nicotine is longer in individuals with low P450 2A6 activity, and smokers with low activity often decrease either the intensity of their smoking or the number of cigarettes they use compared with those with "normal" activity. The effect of P450 2A6 activity on smoking may influence one's tobacco-related disease risk. This review provides an overview of nicotine metabolism and a summary of the use of nicotine metabolite biomarkers to define smoking dose. Some more recent findings, for example, the identification of uridine 5'-diphosphoglucuronosyltransferase 2B10 as the catalyst of nicotine N-glucuronidation, are discussed. We also describe epidemiology studies that establish the contribution of nicotine metabolism and CYP2A6 genotype to lung cancer risk, particularly with respect to specific racial/ethnic groups, such as those with Japanese, African, or European ancestry. We conclude that a model of nicotine metabolism and smoking dose could be combined with other lung cancer risk variables to more accurately identify former smokers at the highest risk of lung cancer and to intervene accordingly.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Nicotina/metabolismo , Biomarcadores de Tumor/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Semivida , Humanos , Neoplasias Pulmonares/enzimología , Fumar/metabolismo
14.
Antimicrob Agents Chemother ; 66(10): e0056522, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36190267

RESUMEN

Clofazimine [N,5-bis(4-chlorophenyl)-3-[(propane-2-yl)rimino]-3,5-dihydrophenazin-2-amine] is an antimycobacterial agent used as a second-line antituberculosis (anti-TB) drug. Nonetheless, little information is known about the metabolic routes of clofazimine, and the enzymes involved in metabolism. This study aimed to characterize the metabolic pathways and enzymes responsible for the metabolism of clofazimine in human liver microsomes. Eight metabolites, including four oxidative metabolites, three glucuronide conjugates, and one sulfate conjugate were identified, and their structures were deduced based on tandem mass spectrometry (MS/MS) spectra. Hydroxylated clofazimine and hydrated clofazimine was generated even in the absence of the NADPH generating system presumably via a nonenzymatic pathway. Hydrolytic-dehalogenated clofazimine was catalyzed mainly by CYP1A2 whereas hydrolytic-deaminated clofazimine was formed by CYP3A4/A5. In case of glucuronide conjugates, UGT1A1, UGT1A3, and UGT1A9 showed catalytic activity toward hydroxylated and hydrated clofazimine glucuronide whereas hydrolytic-deaminated clofazimine glucuronide was catalyzed by UGT1A4, UGT1A9, UGT1A3, and UGT2B4. Our results suggested that CYP1A2 and CYP3A are involved in the formation of oxidative metabolites while UGT1A1, 1A3, 1A4, 1A9, and 2B4 are involved in the formation of glucuronide conjugates of oxidative metabolites of clofazimine.


Asunto(s)
Glucurónidos , Microsomas Hepáticos , Humanos , Microsomas Hepáticos/metabolismo , Glucurónidos/química , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP3A/metabolismo , Clofazimina/metabolismo , Espectrometría de Masas en Tándem , NADP/metabolismo , Propano/metabolismo , Glucuronosiltransferasa , Sulfatos/metabolismo , Aminas/metabolismo , Antibacterianos/metabolismo , Hígado/metabolismo
15.
Hum Genomics ; 15(1): 30, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034810

RESUMEN

UDP-glucuronosyltransferases (UGTs) are the main phase II drug-metabolizing enzymes mediating the most extensive glucuronidation-binding reaction in the human body. The UGT1A family is involved in more than half of glucuronidation reactions. However, significant differences exist in the distribution of UGT1As in vivo and the expression of UGT1As among individuals, and these differences are related to the occurrence of disease and differences in metabolism. In addition to genetic polymorphisms, there is now interest in the contribution of epigenetics and noncoding RNAs (especially miRNAs) to this differential change. Epigenetics regulates UGT1As pretranscriptionally through DNA methylation and histone modification, and miRNAs are considered the key mechanism of posttranscriptional regulation of UGT1As. Both epigenetic inheritance and miRNAs are involved in the differences in sex expression and in vivo distribution of UGT1As. Moreover, epigenetic changes early in life have been shown to affect gene expression throughout life. Here, we review and summarize the current regulatory role of epigenetics in the UGT1A family and discuss the relationship among epigenetics and UGT1A-related diseases and treatment, with references for future research.


Asunto(s)
Epigénesis Genética/genética , Glucuronosiltransferasa/genética , Inactivación Metabólica/genética , Glucuronosiltransferasa/metabolismo , Humanos , MicroARNs/genética , Familia de Multigenes/genética
16.
BMC Gastroenterol ; 22(1): 6, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986792

RESUMEN

BACKGROUND: This study aimed to investigate the correlation of circulating total bilirubin (TB) and UGT1A1 with NAFLD in Chinese Han population. METHODS: 172 adults were enrolled from the Qingdao Municipal Hospital from May 2019 to October 2020. All individuals were examined with MRI-PDFF and divided into no steatosis, mild steatosis, moderate steatosis, and severe steatosis groups according to the MRI-PDFF values. The biochemical indexes and UGT1A1 were measured. RESULTS: There was no significant difference of circulating TB and UGT1A1 levels between NAFLD group and controls. In the moderate steatosis and severe steatosis groups, the circulating TB levels were higher than that in control group (all P < 0.05). In addition, circulating TB levels were weak positively associated with liver fat fraction in NAFLD patients (ρ = 0.205, P = 0.001). There was no significant correlation between circulating UGT1A1 levels with liver fat fraction in patients with NAFLD (ρ = 0.080, P = 0.179), but positively correlation was found in patients with severe steatosis (ρ = 0.305, P = 0.026). CONCLUSIONS: The circulating TB levels were significant high in patients with moderate and severe steatosis. Circulating TB levels were weakly associated with liver fat fraction in patients with NAFLD, and the circulating UGT1A1 levels were positively correlated with liver fat fraction in NAFLD patients with severe steatosis. TRIAL REGISTRATION: ChiCTR, ChiCTR1900022744. Registered 24 April 2019 - Retrospectively registered, http://www.chictr.org.cn/edit.aspx?pid=38304&htm=4 .


Asunto(s)
Bilirrubina/sangre , Glucuronosiltransferasa/sangre , Enfermedad del Hígado Graso no Alcohólico , Adulto , Estudios Transversales , Humanos , Hígado , Imagen por Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico
17.
Biol Pharm Bull ; 45(8): 1116-1123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35908893

RESUMEN

Flavones, which are distributed in a variety of plants and foods in nature, possess significant biological activities, including antitumor and anti-inflammatory effects, and are metabolized into glucuronides by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes in humans. In this study, apigenin, acacetin, and genkwanin, flavones having hydroxyl groups at C5, C7, and/or C4'positions were focused on, and the regioselective glucuronidation in human liver and intestinal microsomes was examined. Two glucuronides (namely, AP-7G and AP-4'G for apigenin, AC-5G and AC-7G for acacetin, and GE-5G and GE-4'G for genkwanin) were formed from each flavone by liver and intestinal microsomes, except for only GE-4'G formation from genkwanin by intestinal microsomes. The order of total glucuronidation activities was liver microsomes > intestinal microsomes for apigenin and acacetin, and liver microsomes < intestinal microsomes for genkwanin. The order of CLint values (x-intercept) based on v versus V/[S] plots for apigenin glucuronidation was AP-7G > AP-4'G in liver microsomes and AP-7G < AP-4'G in intestinal microsomes. The order of CLint values was AC-5G < AC-7G for acacetin and GE-5G < GE-4'G genkwanin glucuronidation in both liver and intestinal microsomes. This suggests that the abilities and roles of UGT enzymes in the glucuronidation of apigenin, acacetin, and genkwanin in humans differ depending on the chemical structure of flavones.


Asunto(s)
Apigenina , Flavonas , Microsomas , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Humanos , Intestinos/metabolismo , Hígado/metabolismo , Microsomas/metabolismo , Microsomas Hepáticos/metabolismo
18.
Biomed Chromatogr ; 36(4): e5300, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34921409

RESUMEN

Liver injury induced by Polygonum multiflorum root (PMR) is an immediate issue requiring global attention. UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors are suspected to additively contribute to the hepatotoxicity of PMR. This study was deliberately designed to simultaneously screen UGT1A1 inhibitors from PMR, and their co-contribution to hepatotoxicity was determined. Using ultrafiltration coupled to LC-MS method, four compounds, namely cis-2,3,5,4'-tetrahydroxystilbene-2-O-ß-glucoside, trans-2,3,5,4'-tetrahydroxystilbene-2-O-ß-d-glucoside, emodin-8-O-ß-d-glucoside, and emodin, were screened, exhibiting the in vitro inhibitory activities against UGT1A1 with IC50 values of 76.23, 18.70, 62.18, and 34.02 µM, respectively. The varying activities of the screened UGT1A1 inhibitors were demonstrated by performing a molecular docking simulation. Finally, zebrafish larvae and mice assays demonstrated that the UGT1A1 inhibitors co-contributed to the hepatotoxicity of PMR. These findings are conducive to understand the role of UGT1A1 inhibitors in PMR-induced hepatotoxicity.


Asunto(s)
Fallopia multiflora , Animales , Cromatografía Liquida , Ratones , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Ultrafiltración , Pez Cebra
19.
Chem Pharm Bull (Tokyo) ; 70(10): 669-678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184449

RESUMEN

This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.


Asunto(s)
Citocromo P-450 CYP3A , Uridina Difosfato , Animales , Derivados del Benceno , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2C9/farmacología , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacología , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/farmacología , Difosfatos/metabolismo , Difosfatos/farmacología , Perros , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/farmacología , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Conejos , Ratas , Especificidad de la Especie , Porcinos , Porcinos Enanos/metabolismo , Uridina/metabolismo , Uridina/farmacología , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacología
20.
Drug Chem Toxicol ; 45(4): 1565-1569, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33187449

RESUMEN

Bisphenol A (BPA) is an endocrine-disrupting chemical, and is predominantly metabolized into glucuronide in mammals. The present study was conducted in order to examine the hepatic and intestinal glucuronidation of BPA in humans and laboratory animals such as monkeys, dogs, rats, and mice in an in vitro system using microsomal fractions. Km, Vmax, and CLint values in human liver microsomes were 7.54 µM, 17.7 nmol/min/mg protein, and 2.36 mL/min/mg protein, respectively. CLint values in liver microsomes of monkey, dogs, rats, and mice were 1.5-, 2.4-, 1.7- and 8.2-fold that of humans, respectively. In intestinal microsomes, Km, Vmax, and CLint values in humans were 39.3 µM, 0.65 nmol/min/mg protein, and 0.02 mL/min/mg protein, respectively. The relative levels of CLint in monkey, dogs, rats, and mice to that of humans were 7.0-, 12-, 34-, and 29-fold, respectively. Although CLint values were higher in liver microsomes than in intestinal microsomes in all species, and marked species difference in the ratio of liver to intestinal microsomes was observed as follows: humans, 118; monkeys, 25; dogs, 23; rats, 5.9; mice, 33. These results suggest that the functional roles of UDP-glucuronosyltransferase (UGT) enzymes expressed in the liver and intestines in the metabolism of BPA extensively differ among humans, monkeys, dogs, rats, and mice.


Asunto(s)
Mucosa Intestinal , Microsomas , Animales , Animales de Laboratorio , Compuestos de Bencidrilo , Perros , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Hígado/metabolismo , Macaca fascicularis , Mamíferos , Ratones , Microsomas/metabolismo , Microsomas Hepáticos , Fenoles , Ratas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA