Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(4): 101039, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38054409

RESUMEN

PURPOSE: Liver transplantation (LTx) is performed in individuals with urea cycle disorders when medical management (MM) insufficiently prevents the occurrence of hyperammonemic events. However, there is a paucity of systematic analyses on the effects of LTx on health-related outcome parameters compared to individuals with comparable severity who are medically managed. METHODS: We investigated the effects of LTx and MM on validated health-related outcome parameters, including the metabolic disease course, linear growth, and neurocognitive outcomes. Individuals were stratified into "severe" and "attenuated" categories based on the genotype-specific and validated in vitro enzyme activity. RESULTS: LTx enabled metabolic stability by prevention of further hyperammonemic events after transplantation and was associated with a more favorable growth outcome compared with individuals remaining under MM. However, neurocognitive outcome in individuals with LTx did not differ from the medically managed counterparts as reflected by the frequency of motor abnormality and cognitive standard deviation score at last observation. CONCLUSION: Whereas LTx enabled metabolic stability without further need of protein restriction or nitrogen-scavenging therapy and was associated with a more favorable growth outcome, LTx-as currently performed-was not associated with improved neurocognitive outcomes compared with long-term MM in the investigated urea cycle disorders.


Asunto(s)
Trasplante de Hígado , Trastornos Innatos del Ciclo de la Urea , Humanos , Trastornos Innatos del Ciclo de la Urea/genética , Trastornos Innatos del Ciclo de la Urea/cirugía , Proteínas , Evaluación de Resultado en la Atención de Salud
2.
Mol Genet Metab ; 141(3): 108112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301530

RESUMEN

OBJECTIVE: Liver transplantation (LTx) is an intervention when medical management is not sufficiently preventing individuals with urea cycle disorders (UCDs) from the occurrence of hyperammonemic events. Supplementation with L-citrulline/arginine is regularly performed prior to LTx to support ureagenesis and is often continued after the intervention. However, systematic studies assessing the impact of long-term L-citrulline/arginine supplementation in individuals who have undergone LTx is lacking to date. METHODS: Using longitudinal data collected systematically, a comparative analysis was carried out by studying the effects of long-term L-citrulline/arginine supplementation vs. no supplementation on health-related outcome parameters (i.e., anthropometric, neurological, and cognitive outcomes) in individuals with UCDs who have undergone LTx. Altogether, 52 individuals with male ornithine transcarbamylase deficiency, citrullinemia type 1 and argininosuccinic aciduria and a pre-transplant "severe" disease course who have undergone LTx were investigated by using recently established and validated genotype-specific in vitro enzyme activities. RESULTS: Long-term supplementation of individuals with L-citrulline/arginine who have undergone LTx (n = 16) does neither appear to alter anthropometric nor neurocognitive endpoints when compared to their severity-adjusted counterparts that were not supplemented (n = 36) after LTx with mean observation periods between four to five years. Moreover, supplementation with L-citrulline/arginine was not associated with an increase of disease-specific plasma arithmetic mean values for the respective amino acids when compared to the non-supplemented control cohort. CONCLUSION: Although supplementation with L-citrulline/arginine is often continued after LTx, this pilot study does neither identify altered long-term anthropometric or neurocognitive health-related outcomes nor does it find an adequate biochemical response as reflected by the unaltered plasma arithmetic mean values for L-citrulline or L-arginine. Further prospective analyses in larger samples and even longer observation periods will provide more insight into the usefulness of long-term supplementation with L-citrulline/arginine for individuals with UCDs who have undergone LTx.


Asunto(s)
Trasplante de Hígado , Trastornos Innatos del Ciclo de la Urea , Masculino , Humanos , Citrulina/uso terapéutico , Arginina/metabolismo , Proyectos Piloto , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Trastornos Innatos del Ciclo de la Urea/cirugía , Suplementos Dietéticos , Urea/metabolismo
3.
Mol Genet Metab ; 141(1): 108097, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113552

RESUMEN

Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.


Asunto(s)
Citrulinemia , Hiperamonemia , Animales , Humanos , Citrulinemia/patología , Pez Cebra/genética , Citrulina , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Fenotipo , Hiperamonemia/genética
4.
J Inherit Metab Dis ; 47(2): 220-229, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38375550

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.


Asunto(s)
Hiperamonemia , Trasplante de Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Humanos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/cirugía , Hiperamonemia/tratamiento farmacológico , Citrulina , Carbamoil Fosfato/metabolismo , Carbamoil Fosfato/uso terapéutico , Amoníaco/metabolismo , Estudios Retrospectivos , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Arginina/uso terapéutico , Ornitina Carbamoiltransferasa
5.
Mol Genet Metab ; 140(3): 107696, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690181

RESUMEN

PURPOSE: Individuals with urea cycle disorders (UCDs) may develop recurrent hyperammonemia, episodic encephalopathy, and neurological sequelae which can impact Health-related Quality of Life (HRQoL). To date, there have been no systematic studies of HRQoL in people with UCDs. METHODS: We reviewed HRQoL and clinical data for 190 children and 203 adults enrolled in a multicenter UCD natural history study. Physical and psychosocial HRQoL in people with UCDs were compared to HRQoL in healthy people and people with phenylketonuria (PKU) and diabetes mellitus. We assessed relationships between HRQoL, UCD diagnosis, and disease severity. Finally, we calculated sample sizes required to detect changes in these HRQoL measures. RESULTS: Individuals with UCDs demonstrated worse physical and psychosocial HRQoL than their healthy peers and peers with PKU and diabetes. In children, HRQoL scores did not differ by diagnosis or severity. In adults, individuals with decreased severity had worse psychosocial HRQoL. Finally, we show that a large number of individuals would be required in clinical trials to detect differences in HRQoL in UCDs. CONCLUSION: Individuals with UCDs have worse HRQoL compared to healthy individuals and those with PKU and diabetes. Future work should focus on the impact of liver transplantation and other clinical variables on HRQoL in UCDs.


Asunto(s)
Diabetes Mellitus , Hiperamonemia , Trasplante de Hígado , Fenilcetonurias , Trastornos Innatos del Ciclo de la Urea , Niño , Humanos , Adulto , Calidad de Vida , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Hiperamonemia/diagnóstico , Fenilcetonurias/complicaciones , Estudios Multicéntricos como Asunto
6.
Mol Genet Metab ; 140(3): 107699, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717413

RESUMEN

Medications that elicit an alternate pathway for nitrogen excretion such as oral sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB) and intravenous sodium phenylacetate (NaPAA) are important for the management of urea cycle disorders (UCDs). Plasma concentrations of their primary metabolite, phenylacetate (PAA), as well as the ratio of PAA to phenylacetylglutamine (PAGN) are useful for guiding dosing and detecting toxicity. However, the frequency of toxic elevations of metabolites and associated clinical covariates is relatively unknown. A retrospective analysis was conducted on 1255 plasma phenylbutyrate metabolite measurements from 387 individuals. An additional analysis was also conducted on a subset of 68 individuals in whom detailed clinical information was available. In the course of these analyses, abnormally elevated plasma PAA and PAA:PAGN were identified in 39 individuals (4.15% of samples) and 42 individuals (4.30% of samples), respectively. Abnormally elevated PAA and PAA:PAGN values were more likely to occur in younger individuals and associate positively with dose of NAPBA and negatively with plasma glutamine and glycine levels. These results demonstrate that during routine clinical management, the majority of patients have PAA levels that are deemed safe. As age is negatively associated with PAA levels however, children undergoing treatment with NaPBA may need close monitoring of their phenylbutyrate metabolite levels.


Asunto(s)
Fenilbutiratos , Trastornos Innatos del Ciclo de la Urea , Niño , Humanos , Estudios Retrospectivos
7.
Mol Genet Metab ; 138(4): 107558, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37004302

RESUMEN

Urea cycle disorders (UCDs) are a group of rare inherited metabolic diseases caused by a deficiency of one of the enzymes or transporters that constitute the urea cycle. Defects in these enzymes lead to acute accumulation (hyperammonemic crises, HAC) or chronically elevated levels (hyperammonemia) of ammonia in the blood and/or various tissues including the brain, which can cause persistent neurological deficits, irreversible brain damage, coma, and death. Ongoing treatment of UCDs include the use of nitrogen-scavenging agents, such as sodium phenylbutyrate (salt of 4-phenylbutyric acid; NaPBA) or glycerol phenylbutyrate (GPB). These treatments provide an alternative pathway for nitrogen disposal through the urinary excretion of phenylacetylglutamine. ACER-001 is a novel formulation of NaPBA with polymer coated pellets in suspension, which is designed to briefly mask the unpleasant bitter taste of NaPBA and is being developed as a treatment option for patients with UCDs. Four Phase 1 studies were conducted to characterize the bioavailability (BA) and/or bioequivalence (BE) of ACER-001 (in healthy volunteers) and taste assessment relative to NaPBA powder (in taste panelists). ACER-001 was shown to be bioequivalent to NaPBA powder under both fed and fasting conditions. Lower systemic exposure of phenylacetate (PAA) and phenylbutyrate (PBA) was observed when ACER-001 was administered with a high-fat meal relative to a fasting state suggesting that the lower doses of PBA administered under fasting conditions may yield similar efficacy with potentially fewer dose dependent adverse effects relative to higher doses with a meal. ACER-001 appeared to be adequately taste-masked, staying below the aversive taste threshold for the first 3 min after the formulation was prepared and remaining palatable when taken within 5 min.


Asunto(s)
Hiperamonemia , Trastornos Innatos del Ciclo de la Urea , Humanos , Fenilbutiratos , Gusto , Polvos/uso terapéutico , Hiperamonemia/tratamiento farmacológico , Nitrógeno , Enfermedades Raras/tratamiento farmacológico , Urea
8.
Arch Biochem Biophys ; 736: 109526, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702451

RESUMEN

Urea cycle disorders (UCD) are inborn errors of metabolism that occur due to a loss of function in enzymes and transporters involved in the urea cycle, causing an intoxication by hyperammonemia and accumulation of metabolites. Patients can develop hepatic encephalopathy (HE), severe neurological and motor disabilities, and often death. The mechanisms involved in the pathophysiology of UCD are many and complex, but there are strong indications that oxidative stress and inflammation are present, being responsible for at least part of the cellular damage that occurs in these diseases. The aim of this study was to evaluate oxidative and nitrosative damage and inflammation in UCD, to better understand the pathophysiology mechanisms of these diseases. We evaluated the nitrite and nitrate content, thiobarbituric acid-reactive substances (TBARS), carbonyl protein content and a panel of cytokines in plasma sample of 14 patients. The UCD patients group consisted of individuals affected with ornithine transcarbamylase deficiency (n = 8), carbamoyl phosphate synthetase deficiency (n = 2), argininosuccinate synthetase deficiency (n = 2); arginase 1 deficiency (n = 1) and argininosuccinate lyase deficiency (n = 1). Patients mean age at diagnosis was 5.25 ± 9.86 years-old and mean concentrations were compared with healthy individuals of matched age and gender. We found a significant reduction in nitrogen reactive species in patients when compared to controls. TBARS was increased in patients, indicating lipid peroxidation. To evaluate protein oxidative damage in UCD, the carbonyl content was measured, and the results also demonstrated an increase in this biomarker. Finally, we found that UCD patients have enhanced concentrations of cytokines, with pro-inflammatory interleukins IL-6, IL-8, interferon-γ and TNF-α, and anti-inflammatory IL-10 being increased when compared to the control group. In conclusion, our results demonstrate that oxidative stress and inflammation occurs in UCD and probably contribute to the severe brain damage present in patients.


Asunto(s)
Trastornos Innatos del Ciclo de la Urea , Adolescente , Niño , Preescolar , Humanos , Citocinas/metabolismo , Inflamación , Estrés Oxidativo , Sustancias Reactivas al Ácido Tiobarbitúrico , Urea , Trastornos Innatos del Ciclo de la Urea/metabolismo , Recién Nacido , Lactante
9.
Am J Med Genet A ; 191(6): 1492-1501, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36883293

RESUMEN

Although decreased citrulline is used as a newborn screening (NBS) marker to identify proximal urea cycle disorders (UCDs), it is also a feature of some mitochondrial diseases, including MT-ATP6 mitochondrial disease. Here we describe biochemical and clinical features of 11 children born to eight mothers from seven separate families who were identified with low citrulline by NBS (range 3-5 µM; screening cutoff >5) and ultimately diagnosed with MT-ATP6 mitochondrial disease. Follow-up testing revealed a pattern of hypocitrullinemia together with elevated propionyl-(C3) and 3-hydroxyisovaleryl-(C5-OH) acylcarnitines, and a homoplasmic pathogenic variant in MT-ATP6 in all cases. Single and multivariate analysis of NBS data from the 11 cases using Collaborative Laboratory Integrated Reports (CLIR; https://clir.mayo.edu) demonstrated citrulline <1st percentile, C3 > 50th percentile, and C5-OH >90th percentile when compared with reference data, as well as unequivocal separation from proximal UCD cases and false-positive low citrulline cases using dual scatter plots. Five of the eight mothers were symptomatic at the time of their child(ren)'s diagnosis, and all mothers and maternal grandmothers evaluated molecularly and biochemically had a homoplasmic pathogenic variant in MT-ATP6, low citrulline, elevated C3, and/or elevated C5-OH. All molecularly confirmed individuals (n = 17) with either no symptoms (n = 12), migraines (n = 1), or a neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) phenotype (n = 3) were found to have an A or U mitochondrial haplogroup, while one child with infantile-lethal Leigh syndrome had a B haplogroup.


Asunto(s)
Enfermedades Mitocondriales , ATPasas de Translocación de Protón Mitocondriales , Tamizaje Neonatal , Humanos , Recién Nacido , ATPasas de Translocación de Protón Mitocondriales/genética , Enfermedades Mitocondriales/sangre , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Citrulina/sangre , Linaje , Trastornos Innatos del Ciclo de la Urea/diagnóstico
10.
J Inherit Metab Dis ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38069502

RESUMEN

An increasing number of women with urea cycle disorders (UCDs) are reaching child-bearing age and becoming pregnant. Improved diagnostics and increased awareness of inherited metabolic diseases has also led to more previously undetected women being diagnosed with a UCD during or shortly after pregnancy. Pregnancy increases the risk of acute metabolic decompensation with hyperammonemia-which can occur in any trimester, and/or the postpartum period, and may lead to encephalopathy, psychosis, coma, and even death, if not diagnosed promptly and treated appropriately. There are also (theoretical) concerns that a maternal UCD, or its treatment, may cause potential risks for the unborn child. Currently evidence on management and outcome of pregnancies in UCDs is limited to case reports and there are no clear guidelines. In order to inform management and investigate outcomes of pregnancies in women with a UCD, we performed a retrospective review of published cases and analyzed data collected from an international online survey. We conclude that, although risk during the intra- and postpartum period exists, multidisciplinary management by an experienced team and a prospective plan usually result in successful pregnancy, labor, delivery, and postpartum period. No deaths were reported in mothers managed accordingly. With the exception of male neonates with Ornithine Transcarbamylase deficiency, the clinical outcome of children born to mothers with UCDs appears positive, although follow-up is limited. The outcome for women presenting with a first acute metabolic decompensation during pregnancy or postpartum is less favorable. Deaths were associated with diagnostic delay/late management of hyperammonemia in previously undiagnosed women.

11.
J Inherit Metab Dis ; 46(6): 1007-1016, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37702610

RESUMEN

The Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) are the worldwide largest databases for individuals with urea cycle disorders (UCDs) comprising longitudinal data from more than 1100 individuals with an overall long-term follow-up of approximately 25 years. However, heterogeneity of the clinical phenotype as well as different diagnostic and therapeutic strategies hamper our understanding on the predictors of phenotypic diversity and the impact of disease-immanent and interventional variables (e.g., diagnostic and therapeutic interventions) on the long-term outcome. A new strategy using combined and comparative data analyses helped overcome this challenge. This review presents the mechanisms and relevant principles that are necessary for the identification of meaningful clinical associations by combining data from different data sources, and serves as a blueprint for future analyses of rare disease registries.


Asunto(s)
Enfermedades Metabólicas , Trastornos Innatos del Ciclo de la Urea , Humanos , Trastornos Innatos del Ciclo de la Urea/terapia , Enfermedades Raras , Sistema de Registros , Fenotipo
12.
J Inherit Metab Dis ; 46(5): 906-915, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395264

RESUMEN

Organic acidurias (OAs), urea-cycle disorders (UCDs), and maple syrup urine disease (MSUD) belong to the category of intoxication-type inborn errors of metabolism (IT-IEM). Liver transplantation (LTx) is increasingly utilized in IT-IEM. However, its impact has been mainly focused on clinical outcome measures and rarely on health-related quality of life (HRQoL). Aim of the study was to investigate the impact of LTx on HrQoL in IT-IEMs. This single center prospective study involved 32 patients (15 OA, 11 UCD, 6 MSUD; median age at LTx 3.0 years, range 0.8-26.0). HRQoL was assessed pre/post transplantation by PedsQL-General Module 4.0 and by MetabQoL 1.0, a specifically designed tool for IT-IEM. PedsQL highlighted significant post-LTx improvements in total and physical functioning in both patients' and parents' scores. According to age at transplantation (≤3 vs. >3 years), younger patients showed higher post-LTx scores on Physical (p = 0.03), Social (p < 0.001), and Total (p =0.007) functioning. MetabQoL confirmed significant post-LTx changes in Total and Physical functioning in both patients and parents scores (p ≤ 0.009). Differently from PedsQL, MetabQoL Mental (patients p = 0.013, parents p = 0.03) and Social scores (patients p = 0.02, parents p = 0.012) were significantly higher post-LTx. Significant improvements (p = 0.001-0.04) were also detected both in self- and proxy-reports for almost all MetabQoL subscales. This study shows the importance of assessing the impact of transplantation on HrQoL, a meaningful outcome reflecting patients' wellbeing. LTx is associated with significant improvements of HrQol in both self- and parent-reports. The comparison between PedsQL-GM and MetabQoL highlighted that MetabQoL demonstrated higher sensitivity in the assessment of disease-specific domains than the generic PedsQL tool.


Asunto(s)
Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce , Trastornos Innatos del Ciclo de la Urea , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Calidad de Vida , Estudios Prospectivos , Enfermedad de la Orina de Jarabe de Arce/cirugía , Padres
13.
Mol Genet Metab ; 135(4): 327-332, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35279366

RESUMEN

Citrulline is a target analyte measured at expanded newborn screening (NBS) and its elevation represents a biomarker for distal urea cycle disorders and citrin deficiency. Altered ratios of citrulline with other urea cycle-related amino acids are helpful for the differential diagnosis. However, the use of cut-off values in screening programmes has raised the issue about the interpretation of mild elevation of citrulline levels detected at NBS, below the usual range observed in the "classical/severe" forms of distal urea cycle disorders and in citrin deficiency. Herein, we report ten subjects with positive NBS for a mild elevation of citrulline (<100 µmol/L), in whom molecular investigations revealed carriers status for argininosuccinate synthase deficiency, a milder form of argininosuccinate lyase deficiency and two other diseases, lysinuric protein intolerance and dihydrolipoamide dehydrogenase deficiency, not primarily affecting the urea cycle. To guide the diagnostic process, we have designed an algorithm for mild citrulline elevation (<100 µmol/L) at NBS, which expands the list of disorders to be included in the differential diagnosis.


Asunto(s)
Citrulina , Trastornos Innatos del Ciclo de la Urea , Citrulinemia , Humanos , Recién Nacido , Tamizaje Neonatal , Urea , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Trastornos Innatos del Ciclo de la Urea/genética
14.
Mol Genet Metab ; 137(1-2): 153-163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36049366

RESUMEN

BACKGROUND: Arginase 1 Deficiency (ARG1-D) is a rare, progressive, metabolic disorder that is characterized by devastating manifestations driven by elevated plasma arginine levels. It typically presents in early childhood with spasticity (predominately affecting the lower limbs), mobility impairment, seizures, developmental delay, and intellectual disability. This systematic review aims to identify and describe the published evidence outlining the epidemiology, diagnosis methods, measures of disease progression, clinical management, and outcomes for ARG1-D patients. METHODS: A comprehensive literature search across multiple databases such as MEDLINE, Embase, and a review of clinical studies in ClinicalTrials.gov (with results reported) was carried out per PRISMA guidelines on 20 April 2020 with no date restriction. Pre-defined eligibility criteria were used to identify studies with data specific to patients with ARG1-D. Two independent reviewers screened records and extracted data from included studies. Quality was assessed using the modified Newcastle-Ottawa Scale for non-comparative studies. RESULTS: Overall, 55 records reporting 40 completed studies and 3 ongoing studies were included. Ten studies reported the prevalence of ARG1-D in the general population, with a median of 1 in 1,000,000. Frequently reported diagnostic methods included genetic testing, plasma arginine levels, and red blood cell arginase activity. However, routine newborn screening is not universally available, and lack of disease awareness may prevent early diagnosis or lead to misdiagnosis, as the disease has overlapping symptomology with other diseases, such as cerebral palsy. Common manifestations reported at time of diagnosis and assessed for disease progression included spasticity (predominately affecting the lower limbs), mobility impairment, developmental delay, intellectual disability, and seizures. Severe dietary protein restriction, essential amino acid supplementation, and nitrogen scavenger administration were the most commonly reported treatments among patients with ARG1-D. Only a few studies reported meaningful clinical outcomes of these interventions on intellectual disability, motor function and adaptive behavior assessment, hospitalization, or death. The overall quality of included studies was assessed as good according to the Newcastle-Ottawa Scale. CONCLUSIONS: Although ARG1-D is a rare disease, published evidence demonstrates a high burden of disease for patients. The current standard of care is ineffective at preventing disease progression. There remains a clear need for new treatment options as well as improved access to diagnostics and disease awareness to detect and initiate treatment before the onset of clinical manifestations to potentially enable more normal development, improve symptomatology, or prevent disease progression.


Asunto(s)
Hiperargininemia , Discapacidad Intelectual , Recién Nacido , Humanos , Preescolar , Arginasa/genética , Hiperargininemia/diagnóstico , Hiperargininemia/epidemiología , Hiperargininemia/genética , Convulsiones/diagnóstico , Convulsiones/epidemiología , Convulsiones/etiología , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/epidemiología , Espasticidad Muscular/genética , Arginina/uso terapéutico , Aminoácidos Esenciales , Progresión de la Enfermedad , Nitrógeno
15.
Mol Genet Metab ; 135(4): 320-326, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35221207

RESUMEN

OBJECTIVES: Reye Syndrome is an acute encephalopathy with increased liver enzymes and blood ammonia, without jaundice. The prevalence of an underlying inherited metabolic disorder (IMD) is unclear, nor the clinical or biological factors directing toward this diagnosis. Our aims were to define these clues in a large series of patients. PATIENTS AND METHODS: We retrospectively studied all patients with Reye admitted in our institution from 1995. We defined 3 groups: Group 1 with a confirmed IMD, Group 2 considered as free of IMD, Group 3 unclassified. Statistical analysis compared patients in Groups 1 and 2, to find criteria for a diagnosis of IMD. RESULTS: Fifty-eight children were included; 41 (71%) had a confirmed IMD, 12 (20%) were free of IMD, and 5 remained unclassified. IMDs included Urea Cycle Disorders (51%), Fatty-Acid Oxidation Disorders (24%), ketogenesis defects (5%), other mitochondrial energy metabolism defects (10%), NBAS mutation (7%), Glycosylation Disorders (2%). In Group 2, the trigger was a viral infection, or a drug, deferasirox in three children. Univariate analysis showed that onset before 2 years-old, recurrent Reye and the association with rhabdomyolysis were significantly associated with IMD. Blood ammonia was a poor discriminating marker. All children were admitted into the intensive care unit, 23% needed continuous venovenous hemodialysis and one died from brain oedema. CONCLUSION: Metabolic tests should be performed early in all cases of Reye, regardless of triggers. As they can be inconclusive, we suggest to systematically go to Next-Generation Sequencing study. These children should be transferred early to a specialized unit.


Asunto(s)
Acidosis , Enfermedades Metabólicas , Síndrome de Reye , Amoníaco , Niño , Preescolar , Humanos , Estudios Retrospectivos , Síndrome de Reye/metabolismo
16.
Mol Genet Metab ; 137(4): 436-444, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34183250

RESUMEN

Early-onset forms of hereditary spastic paraplegia and inborn errors of metabolism that present with spastic diplegia are among the most common "mimics" of cerebral palsy. Early detection of these heterogenous genetic disorders can inform genetic counseling, anticipatory guidance, and improve outcomes, particularly where specific treatments exist. The diagnosis relies on clinical pattern recognition, biochemical testing, neuroimaging, and increasingly next-generation sequencing-based molecular testing. In this short review, we summarize the clinical and molecular understanding of: 1) childhood-onset and complex forms of hereditary spastic paraplegia (SPG5, SPG7, SPG11, SPG15, SPG35, SPG47, SPG48, SPG50, SPG51, SPG52) and, 2) the most common inborn errors of metabolism that present with phenotypes that resemble hereditary spastic paraplegia.


Asunto(s)
Errores Innatos del Metabolismo , Degeneración Retiniana , Paraplejía Espástica Hereditaria , Niño , Humanos , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Proteínas/genética
17.
Cell Mol Neurobiol ; 42(8): 2593-2610, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34665389

RESUMEN

Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.


Asunto(s)
Hiperamonemia , Enfermedades Metabólicas , Amoníaco/metabolismo , Ácidos Grasos , Humanos , Hiperamonemia/complicaciones , Hiperamonemia/diagnóstico , Recién Nacido , Urea/metabolismo
18.
J Inherit Metab Dis ; 45(3): 470-480, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34988999

RESUMEN

Amino acids, the building blocks of proteins in the cells and tissues, are of fundamental importance for cell survival, maintenance, and proliferation. The liver plays a critical role in amino acid metabolism and detoxication of byproducts such as ammonia. Urea cycle disorders with hyperammonemia remain difficult to treat and eventually necessitate liver transplantation. In this study, ornithine transcarbamylase deficient (Otcspf-ash ) mouse model was used to test whether knockdown of a key glutamine metabolism enzyme glutaminase 2 (GLS2, gene name: Gls2) or glutamate dehydrogenase 1 (GLUD1, gene name: Glud1) could rescue the hyperammonemia and associated lethality induced by a high protein diet. We found that reduced hepatic expression of Gls2 but not Glud1 by AAV8-mediated delivery of a short hairpin RNA in Otcspf-ash mice diminished hyperammonemia and reduced lethality. Knockdown of Gls2 but not Glud1 in Otcspf-ash mice exhibited reduced body weight loss and increased plasma glutamine concentration. These data suggest that Gls2 hepatic knockdown could potentially help alleviate risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle.


Asunto(s)
Glutaminasa/metabolismo , Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Trastornos Innatos del Ciclo de la Urea , Amoníaco , Animales , Modelos Animales de Enfermedad , Glutaminasa/genética , Glutamina/metabolismo , Humanos , Hiperamonemia/metabolismo , Hígado/metabolismo , Ratones , Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/metabolismo , Urea/metabolismo , Trastornos Innatos del Ciclo de la Urea/genética , Trastornos Innatos del Ciclo de la Urea/metabolismo
19.
BMC Pregnancy Childbirth ; 22(1): 950, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536326

RESUMEN

BACKGROUND: Citrullinemia type I (CTLN1) is a rare urea cycle disorder (UCD) with few adult cases described so far. Diagnosis of late-onset CTLN1 is difficult, and delayed treatment may increase the risk of severe hyperammonemia. Pregnancy is an important risk factor for women with CTLN1. However, the clinical manifestations of CTLN1 in a pregnant woman may be mistaken for pregnancy side effects and ultimately delay a timely diagnosis. CASE PRESENTATION: A 34-year-old woman developed vomiting and disturbance of consciousness after 12 weeks of gestation. A blood test showed hyperammonemia (454 µg/dL) with normal liver function tests. She fell into a deep coma, and her serum ammonia level increased to 800 µg/dL. Continuous renal replacement therapy (CRRT) was administered as a diagnostic treatment for UCD and serum ammonia. This patient's case was complicated by co-infection; her dependents decided to withdraw life support and the patient died. She was diagnosed with CTLN1 by analyses of plasma amino acids, urinary orotic acid, and second-generation gene sequencing. DISCUSSION AND CONCLUSION: When a patient displays symptoms of emesis and disturbance of consciousness in early pregnancy, blood ammonia should be monitored, and UCD should be considered, particularly for patients with hyperammonemia in the absence of severe liver function abnormalities.


Asunto(s)
Citrulinemia , Hiperamonemia , Humanos , Femenino , Embarazo , Adulto , Citrulinemia/diagnóstico , Citrulinemia/genética , Citrulinemia/terapia , Hiperamonemia/complicaciones , Mujeres Embarazadas , Amoníaco , Aminoácidos
20.
Hum Mutat ; 42(12): 1624-1636, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510628

RESUMEN

N-acetylglutamate synthase deficiency is an autosomal recessive urea cycle disorder caused either by decreased expression of the NAGS gene or defective NAGS enzyme resulting in decreased production of N-acetylglutamate (NAG), an allosteric activator of carbamylphosphate synthetase 1 (CPS1). NAGSD is the only urea cycle disorder that can be effectively treated with a single drug, N-carbamylglutamate (NCG), a stable NAG analog, which activates CPS1 to restore ureagenesis. We describe three patients with NAGSD due to four novel noncoding sequence variants in the NAGS regulatory regions. All three patients had hyperammonemia that resolved upon treatment with NCG. Sequence variants NM_153006.2:c.427-222G>A and NM_153006.2:c.427-218A>C reside in the 547 bp-long first intron of NAGS and define a novel NAGS regulatory element that binds retinoic X receptor α. Sequence variants NC_000017.10:g.42078967A>T (NM_153006.2:c.-3065A>T) and NC_000017.10:g.42078934C>T (NM_153006.2:c.-3098C>T) reside in the NAGS enhancer, within known HNF1 and predicted glucocorticoid receptor binding sites, respectively. Reporter gene assays in HepG2 and HuH-7 cells demonstrated that all four substitutions could result in reduced expression of NAGS. These findings show that analyzing noncoding regions of NAGS and other urea cycle genes can reveal molecular causes of disease and identify novel regulators of ureagenesis.


Asunto(s)
N-Acetiltransferasa de Aminoácidos , Hiperamonemia , Trastornos Innatos del Ciclo de la Urea , N-Acetiltransferasa de Aminoácidos/química , N-Acetiltransferasa de Aminoácidos/genética , Humanos , Hiperamonemia/genética , Intrones , Secuencias Reguladoras de Ácidos Nucleicos , Trastornos Innatos del Ciclo de la Urea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA