Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Genes Dev ; 31(16): 1615-1634, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947496

RESUMEN

Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.


Asunto(s)
Linfangiogénesis , Animales , Membrana Basal/fisiología , Carcinogénesis , Inflamación/fisiopatología , Integrinas/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Vasos Linfáticos/embriología , Ratones , Comunicación Paracrina , Factor C de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
J Neuroinflammation ; 21(1): 36, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287311

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction caused by sepsis. Neuroinflammation induced by sepsis is considered a potential mechanism of SAE; however, very little is known about the role of the meningeal lymphatic system in SAE. METHODS: Sepsis was established in male C57BL/6J mice by intraperitoneal injection of 5 mg/kg lipopolysaccharide, and the function of meningeal lymphatic drainage was assessed. Adeno-associated virus 1-vascular endothelial growth factor C (AAV1-VEGF-C) was injected into the cisterna magna to induce meningeal lymphangiogenesis. Ligation of deep cervical lymph nodes (dCLNs) was performed to induce pre-existing meningeal lymphatic dysfunction. Cognitive function was evaluated by a fear conditioning test, and inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS: The aged mice with SAE showed a significant decrease in the drainage of OVA-647 into the dCLNs and the coverage of the Lyve-1 in the meningeal lymphatic, indicating that sepsis impaired meningeal lymphatic drainage and morphology. The meningeal lymphatic function of aged mice was more vulnerable to sepsis in comparison to young mice. Sepsis also decreased the protein levels of caspase-3 and PSD95, which was accompanied by reductions in the activity of hippocampal neurons. Microglia were significantly activated in the hippocampus of SAE mice, which was accompanied by an increase in neuroinflammation, as indicated by increases in interleukin-1 beta, interleukin-6 and Iba1 expression. Cognitive function was impaired in aged mice with SAE. However, the injection of AAV1-VEGF-C significantly increased coverage in the lymphatic system and tracer dye uptake in dCLNs, suggesting that AAV1-VEGF-C promotes meningeal lymphangiogenesis and drainage. Furthermore, AAV1-VEGF-C reduced microglial activation and neuroinflammation and improved cognitive dysfunction. Improvement of meningeal lymphatics also reduced sepsis-induced expression of disease-associated genes in aged mice. Pre-existing lymphatic dysfunction by ligating bilateral dCLNs aggravated sepsis-induced neuroinflammation and cognitive impairment. CONCLUSION: The meningeal lymphatic drainage is damaged in sepsis, and pre-existing defects in this drainage system exacerbate SAE-induced neuroinflammation and cognitive dysfunction. Promoting meningeal lymphatic drainage improves SAE. Manipulation of meningeal lymphangiogenesis could be a new strategy for the treatment of SAE.


Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Encefalopatía Asociada a la Sepsis , Sepsis , Ratones , Masculino , Animales , Factor C de Crecimiento Endotelial Vascular , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Sepsis/complicaciones , Lesiones Encefálicas/complicaciones
3.
Exp Eye Res ; 243: 109891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615832

RESUMEN

The aim of this study is to investigate the relationship between age-related macular degeneration (AMD) and lymphangiogenesis biomarkers, namely LYVE-1, Podoplanin, VEGF-C, VEGFR-2 and VEGFR-3. This prospective and interventional study includes 30 patients with AMD which may be dry or wet type and 30 controls for whom vitrectomy and phacoemulsification was indicated due to additional pathologies (epiretinal membrane, macular hole, retinal detachment, and cataract). 0.1-0,2 ml of aqueous humor and 0.5-1 ml of vitreous sample was taken during the operations. Before the operations 1 tube serum was also taken. All the lymphangiogenesis biomarkers in the study are examined by ELISA method. LYVE-1 (p = 0.001) and Podoplanin (p = 0.004) levels in the vitreous for the patient group are found to be significantly lower than the control group. Serum (p = 0.019), vitreous (p = 0.001), aqueous (p < 0.001) levels of VEGF-C for the patient group are significantly higher than the control group. VEGF-C/VEGFR-2 (p < 0.001), VEGF-C/VEGFR-3 (p < 0.001) ratios in the vitreous for the patient group are found to be significantly higher than the control group. Especially in wet AMD patients, LYVE-1 level is significantly lower in the vitreous (p = 0.002) and aqueous (p = 0.002) than the control group. In addition, Podoplanin level is observed as significantly lower in the vitreous (p = 0.014) and serum (p = 0.002) in comparison to control group. In the wet AMD group, VEGF-C level in the vitreous (p < 0.001), aqueous (p < 0.001) and serum (p = 0.001) is higher than the control group. The result of this study indicates a valid relationship between the weakening of lymphangiogenesis and the pathophysiology of AMD, especially for the wet type. It is observed that the levels of receptors that bind VEGF-C (VEGFR-2 and VEGFR-3) do not increase at the same rate as VEGF-C to compensate for the increase in VEGF-C. The absence of an increase in VEGFR-3, which is especially necessary for lymphangiogenesis, also suggests that lymphangiogenesis is weakened or decreased in AMD. In the future interventional studies with larger series, examination of lymphangiogenic biomarkers in inflammatory retinal diseases and glaucoma may reveal unexplored details.


Asunto(s)
Humor Acuoso , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Linfangiogénesis , Glicoproteínas de Membrana , Factor C de Crecimiento Endotelial Vascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Proteínas de Transporte Vesicular , Cuerpo Vítreo , Humanos , Masculino , Femenino , Biomarcadores/metabolismo , Biomarcadores/sangre , Estudios Prospectivos , Anciano , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/sangre , Humor Acuoso/metabolismo , Cuerpo Vítreo/metabolismo , Cuerpo Vítreo/patología , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Degeneración Macular/metabolismo , Degeneración Macular/diagnóstico , Degeneración Macular Húmeda/metabolismo , Degeneración Macular Húmeda/diagnóstico
4.
Cell Mol Life Sci ; 80(11): 332, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872442

RESUMEN

Meningeal lymphatic vessels (MLVs) help maintain central nervous system (CNS) homeostasis via their ability to facilitate macromolecule waste clearance and neuroimmune trafficking. Although these vessels were overlooked for centuries, they have now been characterized in humans, non-human primates, and rodents. Recent studies in mice have explored the stereotyped growth and expansion of MLVs in dura mater, the various transcriptional, signaling, and environmental factors regulating their development and long-term maintenance, and the pathological changes these vessels undergo in injury, disease, or with aging. Key insights gained from these studies have also been leveraged to develop therapeutic approaches that help augment or restore MLV functions to improve brain health and cognition. Here, we review fundamental processes that control the development of peripheral lymphatic networks and how these might apply to the growth and expansion of MLVs in their unique meningeal environment. We also emphasize key findings in injury and disease models that may reveal additional insights into the plasticity of these vessels throughout the lifespan. Finally, we highlight unanswered questions and future areas of study that can further reveal the exciting therapeutic potential of meningeal lymphatics.


Asunto(s)
Vasos Linfáticos , Ratones , Animales , Vasos Linfáticos/patología , Meninges/fisiología , Sistema Nervioso Central , Sistema Linfático , Modelos Animales
5.
Ecotoxicol Environ Saf ; 278: 116444, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728943

RESUMEN

Silicosis is a disease characterized by lung inflammation and fibrosis caused by long-term inhalation of free silicon dioxide (SiO2). Recent studies have found that a large number of lymphatic hyperplasia occurs during the occurrence and development of silicosis. miRNAs play an important role in lymphangiogenesis. However, the regulation and mechanism of miRNAs on lymphangiogenesis in silicosis remain unclear. In this study, lymphangiogenesis was observed in silicosis rats, and VEGF-C-targeted miRNAs were screened, and the effect of miRNAs on the formation of human lymphatic endothelial cells (HLECs) tubular structure was investigated in vitro. The results showed that SiO2 promoted the expressions of Collagen Ι and α-SMA, TNF-α, IL-6 and VEGF-C increased first and then decreased, and promoted the formation of lymphatic vessels. Bioinformatics methods screened miR-455-3p for targeted binding to VEGF-C, and dual luciferase reporter genes confirmed VEGF-C as the target gene of miR-455-3p, and miR-455-3p was down-regulated in the lung tissue of silicosis rats. Transfection of miR-455-3p Inhibitors down-regulated the expression level of miR-455-3p and up-regulated the expression levels of VEGF-C and VEGFR-3 in HLECs, enhanced migration ability and increased tube formation. Transfection of miR-455-3p Mimics showed an opposite trend. These results suggest that miR-455-3p further regulates the tubular structure formation of HLECs by regulating VEGF-C/VEGFR3. Therefore, targeting miR-455-3p may provide a new therapeutic strategy for SiO2-induced silicosis injury.


Asunto(s)
Linfangiogénesis , MicroARNs , Silicosis , Factor C de Crecimiento Endotelial Vascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Masculino , Ratas , Células Endoteliales/efectos de los fármacos , Linfangiogénesis/efectos de los fármacos , MicroARNs/genética , Ratas Sprague-Dawley , Dióxido de Silicio/toxicidad , Silicosis/patología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273689

RESUMEN

Malignant breast cancers pose a notable challenge when it comes to treatment options. Recently, research has implicated extracellular vesicles (EVs) secreted by cancer cells in the formation of a pre-metastatic niche. Small clumps of CD44-positive breast cancer cells are efficiently transferred through CD44-CD44 protein homophilic interaction. This study aims to examine the function of CD44-positive EVs in pre-metastatic niche formation in vitro and to suggest a more efficacious EV formulation. We used mouse mammary carcinoma cells, BJMC3879 Luc2 (Luc2 cells) as the source of CD44-positive EVs and mouse endothelial cells (UV2 cells) as the recipient cells in the niche. Luc2 cells exhibited an enhanced secretion of EVs expressing CD44 and endothelial growth factors (VEGF-A, -C) under 20% O2 (representative of the early stage of tumorigenesis) compared to its expression under 1% O2 (in solid tumor), indicating that pre-metastatic niche formation occurs in the early stage. Furthermore, UV2 endothelial cells expressing CD44 demonstrated a high level of engulfment of EVs that had been supplemented with hyaluronan, and the proliferation of UV2 cells occurred following the engulfment of EVs. These results suggest that anti-VEGF-A and -C encapsulated, CD44-expressing, and hyaluronan-coated EVs are more effective for tumor metastasis.


Asunto(s)
Vesículas Extracelulares , Receptores de Hialuranos , Animales , Receptores de Hialuranos/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Femenino , Línea Celular Tumoral , Células Endoteliales/metabolismo , Células Endoteliales/patología , Metástasis de la Neoplasia , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular , Microambiente Tumoral , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Ácido Hialurónico/metabolismo
7.
Angiogenesis ; 26(3): 437-461, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017884

RESUMEN

Together with the platelet-derived growth factors (PDGFs), the vascular endothelial growth factors (VEGFs) form the PDGF/VEGF subgroup among cystine knot growth factors. The evolutionary relationships within this subgroup have not been examined thoroughly to date. Here, we comprehensively analyze the PDGF/VEGF growth factors throughout all animal phyla and propose a phylogenetic tree. Vertebrate whole-genome duplications play a role in expanding PDGF/VEGF diversity, but several limited duplications are necessary to account for the temporal pattern of emergence. The phylogenetically oldest PDGF/VEGF-like growth factor likely featured a C-terminus with a BR3P signature, a hallmark of the modern-day lymphangiogenic growth factors VEGF-C and VEGF-D. Some younger VEGF genes, such as VEGFB and PGF, appeared completely absent in important vertebrate clades such as birds and amphibia, respectively. In contrast, individual PDGF/VEGF gene duplications frequently occurred in fish on top of the known fish-specific whole-genome duplications. The lack of precise counterparts for human genes poses limitations but also offers opportunities for research using organisms that diverge considerably from humans. Sources for the graphical abstract: 326 MYA and older [1]; 72-240 MYA [2]; 235-65 MYA [3].


Asunto(s)
Factor de Crecimiento Derivado de Plaquetas , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Filogenia , Factores de Crecimiento Endotelial Vascular , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Linfangiogénesis
8.
Annu Rev Med ; 72: 167-182, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33502903

RESUMEN

The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions. Here, we focus on the therapeutic roles of lymphatic vessels in diseases and summarize the promising therapeutic targets for modulating lymphangiogenesis or lymphatic function in preclinical or clinical settings. We also discuss considerations for drug delivery or targeting of lymphatic vessels for treatment of lymphatic-related diseases. The lymphatic vasculature is rapidly emerging as a critical system for targeted modulation of its function and as a vehicle for innovative drug delivery.


Asunto(s)
Linfangiogénesis/efectos de los fármacos , Enfermedades Linfáticas/tratamiento farmacológico , Vasos Linfáticos/patología , Preparaciones Farmacéuticas/administración & dosificación , Animales , Vías de Administración de Medicamentos , Humanos , Enfermedades Linfáticas/diagnóstico
9.
J Gene Med ; 25(5): e3480, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36750632

RESUMEN

BACKGROUND: Tumor lymphangiogenesis is a critical component in the progression of cancers and specific microRNAs have been reported to be implicated in this process. Recent studies revealed the involvement of miR-1236 in lymphangiogenic signaling by targeting vascular endothelial growth factor receptor 3 (VEGFR3). However, the prognostic importance of miR-1236 and its clinical relevance for lymphangiogenesis in ovarian cancer (OC) remains unclear. METHODS: The study included 52 ovarian tumors and 28 normal ovarian tissues. Quantitative real-time PCR was utilized to analyze the VEGFR3, VEGF-C, LYVE-1 and PROX1 mRNA expression as well as miR-1236. VEGFR3 protein expression was measured by immunohistochemistry staining. Immunohistochemistry for the podoplanin marker (D2-40) was performed to measure lymphatic vessel density (LVD). In addition, diagnostic evaluation based on the receiver-operating characteristic (ROC) curve was performed. The influence of miR-1236 on overall survival was evaluated by Kaplan-Meier method. RESULTS: Here, we show that miR-1236 expression was significantly decreased in ovarian tumors compared with control tissues (p < 0.001) and correlated with advanced clinical stage, lymph node metastasis, distant metastasis and patient survival (All P < 0.05). Moreover, in ovarian tumors, LVD as well as the gene expression of VEGFR3, VEGF-C and LYVE-1, but not PROX1, were found to be remarkably higher compared with control tissues. We also detected a more robust positive staining for VEGFR3 in OC tissues than in control tissues. Furthermore, our results demonstrated an inverse association of miR-1236 expression with LVD, VEGFR3, LYVE-1 and PROX1 expression in OC tissues. The ROC curve analysis indicated that miR-1236 expression has the potential to be used as a diagnostic and prognostic biomarker in OC. Survival analysis further verified a lowered overall survival rate in patients with low miR-1236 expression than in those with high expression. CONCLUSIONS: Our results provide evidence for the translational involvement of miR-1236 in the lymphangiogenesis of OC by regulating lymphangiogenesis-related factors and support the clinical importance of miR-1236 as a new diagnostic and prognostic biomarker for OC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/análisis , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular , Biomarcadores
10.
Development ; 147(23)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33060128

RESUMEN

Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proteínas de Homeodominio/genética , Linfangiogénesis/genética , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones , Morfogénesis/genética , Transducción de Señal/genética , Válvulas Venosas/crecimiento & desarrollo , Válvulas Venosas/metabolismo , Proteínas Señalizadoras YAP
11.
Development ; 147(21)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32188632

RESUMEN

Bones do not normally have lymphatics. However, individuals with generalized lymphatic anomaly (GLA) or Gorham-Stout disease (GSD) develop ectopic lymphatics in bone. Despite growing interest in the development of tissue-specific lymphatics, the cellular origin of bone lymphatic endothelial cells (bLECs) is not known and the development of bone lymphatics has not been fully characterized. Here, we describe the development of bone lymphatics in mouse models of GLA and GSD. Through lineage-tracing experiments, we show that bLECs arise from pre-existing Prox1-positive LECs. We show that bone lymphatics develop in a stepwise manner where regional lymphatics grow, breach the periosteum and then invade bone. We also show that the development of bone lymphatics is impaired in mice that lack osteoclasts. Last, we show that rapamycin can suppress the growth of bone lymphatics in our models of GLA and GSD. In summary, we show that bLECs can arise from pre-existing LECs and that rapamycin can prevent the growth of bone lymphatics.


Asunto(s)
Huesos/embriología , Vasos Linfáticos/embriología , Animales , Huesos/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Integrasas/metabolismo , Vasos Linfáticos/efectos de los fármacos , Ratones Transgénicos , Mutación/genética , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Sirolimus/farmacología , Factor de Transcripción Sp7/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Ophthalmology ; 130(6): 588-597, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36754174

RESUMEN

PURPOSE: Neovascular (wet) age-related macular degeneration (nAMD) is driven by VEGFs A, C, and D, which promote angiogenesis and vascular permeability. Intravitreal injections of anti-VEGF-A drugs are the standard of care, but these do not inhibit VEGF-C and D, which may explain why many patients fail to respond fully. This trial aimed to test the safety and efficacy of OPT-302, a biologic inhibitor of VEGF-C and D, in combination with the anti-VEGF-A inhibitor ranibizumab. DESIGN: Dose-ranging, phase 2b, randomized, double-masked, sham-controlled trial. PARTICIPANTS: Participants with treatment-naive nAMD were enrolled from 109 sites across Europe, Israel, and the United States. METHODS: Participants were randomized to 6, 4-weekly, intravitreal injections of 0.5 mg OPT-302, 2.0 mg OPT-302, or sham, plus intravitreal 0.5 mg ranibizumab. MAIN OUTCOME MEASURES: The primary outcome was mean change in ETDRS best-corrected visual acuity (BCVA) at 24 weeks. Secondary outcomes (comparing baseline with week 24) were the proportion of participants gaining or losing ≥ 15 ETDRS BCVA letters; area under the ETDRS BCVA over time curve; change in spectral-domain OCT (SD-OCT) central subfield thickness; and change in intraretinal fluid and subretinal fluid on SD-OCT. RESULTS: Of 366 participants recruited from December 1, 2017, to November 30, 2018, 122, 123, and 121 were randomized to 0.5 mg OPT-302, 2.0 mg OPT-302, and sham, respectively. Mean (± standard deviation) visual acuity gain in the 2.0 mg OPT-302 group was significantly superior to sham (+14.2 ± 11.61 vs. +10.8 ± 11.52 letters; P = 0.01). The 0.5 mg OPT-302 group was not significantly different than the sham group (+9.44 ± 11.32 letters; P = 0.83). Compared with sham, the secondary BCVA outcomes favored the 2.0 mg OPT-302 group, with structural outcomes favoring both OPT-302 dosage groups. Adverse events (AEs) were similar across groups, with 16 (13.3%), 7 (5.6%), and 10 (8.3%) participants in the lower-dose, higher-dose, and sham groups, respectively, developing at least 1 serious AE. Two unrelated deaths both occurred in the sham arm. CONCLUSIONS: Significantly superior vision gain was observed with OPT-302 2.0 mg combination therapy, versus standard of care, with favorable safety (ClinicalTrials.gov identifier: NCT03345082). FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Ranibizumab , Degeneración Macular Húmeda , Humanos , Ranibizumab/uso terapéutico , Factor C de Crecimiento Endotelial Vascular/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Factor A de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis , Degeneración Macular Húmeda/diagnóstico , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/inducido químicamente , Inyecciones Intravítreas , Resultado del Tratamiento
13.
J Card Fail ; 29(12): 1629-1638, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37121266

RESUMEN

BACKGROUND: Although vascular endothelial growth factor C (VEGF-C) is a known lymphangiogenesis modulator, its relationship with congestion formation and outcomes in acute heart failure (AHF) is unknown. METHODS: Serum VEGF-C levels were measured in 237 patients hospitalized for AHF. The population was stratified by VEGF-C levels and linked with clinical signs of congestion and outcomes. RESULTS: The study's population was divided in VEGF-C tertiles: low (median [Q25-Q75]: 33 [15-175]), medium (606 [468-741]) and high (1141 [968-1442] pg/mL). The group with low VEGF-C on admission presented with the highest prevalence of severe lower-extremity edema (low VEGF-C vs medium VEGF-C vs high VEGF-C): 30% vs 13% vs 20%; P = 0.02); the highest percentage of patients with ascites: 22% vs 9% vs 6%; P = 0.006; and the lowest proportion of patients with pulmonary congestion: 22% vs 30% vs 46%; P = 0.004. The 1-year mortality rate was the highest in the low VEGF-C tertile: 35% vs 28% vs 18%, respectively; P = 0.049. The same pattern was observed for the composite endpoint (death and AHF rehospitalization): 45% vs 43% vs 26%; P = 0.029. The risks of death at 1-year follow-up and composite endpoint were significantly lower in the high VEGF-C group. CONCLUSIONS: Low VEGF-C was associated with more severe signs of congestion (signs of fluid accumulation) and adverse clinical outcomes.


Asunto(s)
Insuficiencia Cardíaca , Edema Pulmonar , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/complicaciones , Factor C de Crecimiento Endotelial Vascular , Linfangiogénesis , Edema , Edema Pulmonar/complicaciones
14.
Exp Dermatol ; 32(1): 50-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168721

RESUMEN

Plasminogen activating inhibitor-1 (PAI-1) is associated with poor clinical outcomes, and elevated levels of PAI-1 in both tissue and serum are correlated with poor response to therapy in various cancers, including skin cancer. Cutaneous angiosarcoma (CAS) is a vascular tumor histologically characterized by detachment of endothelial cell-derived tumor cells. Since CAS expresses multiple angiogenic growth factors and has increased expressions of angiogenic receptor tyrosine kinase transcripts including VEGFR1/2/3, angiogenesis-promoting factors are potential drug targets in CAS. In this study, the expression of PAI-1 was examined in 31 cases of CAS, and the immunomodulatory effects of PAI-1 on a human CAS cell line, ISO-HAS-B, were evaluated. We found that, of the angiogenesis-promoting factors, PAI-1 was expressed in almost all cases of CAS, and PAI-1 increased the mRNA expressions of IL-23p19, VEGF-C, CXCL5 and CCL20 on ISO-HAS-B. Moreover, PAI-1 stimulated ISO-HAS-B culture supernatant promoted favourable tube networks, suggesting that these tumor-derived factors promote the pro-angiogenic effect on tumor development. In addition, IL-23p19 was expressed in 61.3% of cases, whereas VEGF-C was expressed in 41% of cases. The results of the present study suggest that PAI-1 promotes angiogenesis that results in tumor progression in CAS.


Asunto(s)
Hemangiosarcoma , Neoplasias Cutáneas , Humanos , Hemangiosarcoma/tratamiento farmacológico , Hemangiosarcoma/patología , Subunidad p19 de la Interleucina-23 , Plasminógeno/uso terapéutico , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Serina Proteasas , Factor C de Crecimiento Endotelial Vascular/uso terapéutico
15.
Mol Cell Probes ; 67: 101895, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36682577

RESUMEN

BACKGROUND: Circulating cell-free DNA (cfDNA) and vascular endothelial growth factor-C (VEGF-C) can be utilized to detect cancer and predict its prognosis. However, their potential application in laryngeal squamous cell carcinoma (LSCC) is unclear. PURPOSE: This study aimed to identify the diagnostic and prognostic value of cfDNA and VEGF-C in LSCC patients. METHODS: The plasma cfDNA of 148 LSCC patients and 43 non-tumor patients were isolated. Quantitative real-time PCR (qRT-PCR) was performed to assess long and short DNA fragments in plasma by amplifying the ALU repeats. ALU-qPCR results (ALU247/ALU115) were used to calculate cfDNA integrity index. Vascular endothelial growth factor-C (VEGF-C) level was detected by ELISA assay. Correlation between cfDNA and clinical features was analyzed. For detecting the sensitivity and specificity of cfDNA and VEGF-C alone or in combination for diagnosing LSCC, receiver operator characteristic (ROC) was established. For evaluating the overall survival (OS) of LSCC, Kaplan-Meier curves were established. RESULTS: LSCC patients had significantly higher levels of plasma cfDNA (ALU115, ALU247, and cfDNA integrity index) and VEGF-C than those without cancer (p < 0.05), showing area under the curve (AUC) values of 0.79, 0.74, 0.62 and 0.80, when cutoff value was correspondingly defined at 2.14 ng/mL, 1.39 ng/mL, 0.73 and 412.90 pg/mL, respectively. The AUC for distinguishing LSCC patients from non-tumor patients by plasma cfDNA combined with VEGF-C was 0.89 (95% CI: 0.83-0.94). A significant correlation was found between plasma cfDNA levels and Ki-67, tumor size, pT stage, and smoking history (p < 0.05). Based on survival analysis, low VEGF-C concentration groups had longer OS than those with high VEGF-C concentration (p = 0.02). CONCLUSION: Indicators such as plasma cfDNA and VEGF-C may be used to diagnose and monitor LSCC for its noninvasiveness and rapid accessibility.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de Cabeza y Cuello , Humanos , Biomarcadores de Tumor/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello , Factor C de Crecimiento Endotelial Vascular
16.
Proc Natl Acad Sci U S A ; 117(41): 25859-25868, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33004630

RESUMEN

Endometriosis is a highly prevalent gynecological disease with severe negative impacts on life quality and financial burden. Unfortunately, there is no cure for this disease, which highlights the need for further investigation about the pathophysiology of this disease to provide clues for developing novel therapeutic regimens. Herein, we identified that vascular endothelial growth factor (VEGF)-C, a potent lymphangiogenic factor, is up-regulated in endometriotic cells and contributes to increased lymphangiogenesis. Bioinformatic analysis and molecular biological characterization revealed that VEGF-C is negatively regulated by an orphan nuclear receptor, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII). Further studies demonstrated that proinflammatory cytokines, via suppression of COUP-TFII level, induce VEGF-C overexpression. More importantly, we show that functional VEGF-C is transported by extracellular vesicles (EVs) to enhance the lymphangiogenic ability of lymphatic endothelial cells. Autotransplanted mouse model of endometriosis showed lenvatinib treatment abrogated the increased lymphatic vessels development in the endometriotic lesion, enlarged retroperitoneal lymph nodes, and immune cells infiltration, indicating that blocking VEGF-C signaling can reduce local chronic inflammation and concomitantly endometriosis development. Evaluation of EV-transmitted VEGF-C from patients' sera demonstrates it is a reliable noninvasive way for clinical diagnosis. Taken together, we identify the vicious cycle of inflammation, COUP-TFII, VEGF-C, and lymphangiogenesis in the endometriotic microenvironment, which opens up new horizons in understanding the pathophysiology of endometriosis. VEGF-C not only can serve as a diagnostic biomarker but also a molecular target for developing therapeutic regimens.


Asunto(s)
Endometriosis/inmunología , Vesículas Extracelulares/inmunología , Sistema Inmunológico/inmunología , Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular/inmunología , Animales , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/inmunología , Citocinas/genética , Citocinas/inmunología , Endometriosis/genética , Endometriosis/fisiopatología , Células Endoteliales/inmunología , Vesículas Extracelulares/genética , Femenino , Humanos , Vasos Linfáticos/inmunología , Ratones , Factor C de Crecimiento Endotelial Vascular/genética
17.
Cancer Sci ; 113(6): 2179-2193, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35332604

RESUMEN

Hepatocyte growth factor (HGF) activator inhibitor type-1 (HAI-1), encoded by the SPINT1 gene, is a transmembrane protease inhibitor that regulates membrane-anchored serine proteases, particularly matriptase. Here, we explored the role of HAI-1 in tongue squamous cell carcinoma (TSCC) cells. An immunohistochemical study of HAI-1 in surgically resected TSCC revealed the cell surface immunoreactivity of HAI-1 in the main portion of the tumor. The immunoreactivity decreased in the infiltrative front, and this decrease correlated with enhanced lymphatic invasion as judged by podoplanin immunostaining. In vitro homozygous deletion of SPINT1 (HAI-1KO) in TSCC cell lines (HSC3 and SAS) suppressed the cell growth rate but significantly enhanced invasion in vitro. The loss of HAI-1 resulted in enhanced pericellular activities of proteases, such as matriptase and urokinase-type plasminogen activator, which induced activation of HGF/MET signaling in the co-culture with pro-HGF-expressing fibroblasts and plasminogen-dependent plasmin generation, respectively. The enhanced plasminogen-dependent plasmin generation was abrogated partly by matriptase silencing. Culture supernatants of HAI-1KO cells had enhanced potency for converting the proform of vascular endothelial growth factor-C (VEGF-C), a lymphangiogenesis factor, into the mature form in a plasminogen-dependent manner. Furthermore, HGF significantly stimulated VEGF-C expression in TSCC cells. Orthotopic xenotransplantation into nude mouse tongue revealed enhanced lymphatic invasion of HAI-1KO TSCC cells compared to control cells. Our results suggest that HAI-1 insufficiency leads to dysregulated pericellular protease activity, which eventually orchestrates robust activation of protease-dependent growth factors, such as HGF and VEGF-C, in a tumor microenvironment to contribute to TSCC progression.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas Inhibidoras de Proteinasas Secretoras , Neoplasias de la Lengua , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Fibrinolisina/genética , Homocigoto , Humanos , Ratones , Plasminógeno/genética , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Eliminación de Secuencia , Serina Endopeptidasas , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología , Microambiente Tumoral , Factor C de Crecimiento Endotelial Vascular/genética
18.
Angiogenesis ; 25(2): 205-224, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34665379

RESUMEN

In mice, embryonic dermal lymphatic development is well understood and used to study gene functions in lymphangiogenesis. Notch signaling is an evolutionarily conserved pathway that modulates cell fate decisions, which has been shown to both inhibit and promote dermal lymphangiogenesis. Here, we demonstrate distinct roles for Notch4 signaling versus canonical Notch signaling in embryonic dermal lymphangiogenesis. Actively growing embryonic dermal lymphatics expressed NOTCH1, NOTCH4, and DLL4 which correlated with Notch activity. In lymphatic endothelial cells (LECs), DLL4 activation of Notch induced a subset of Notch effectors and lymphatic genes, which were distinctly regulated by Notch1 and Notch4 activation. Treatment of LECs with VEGF-A or VEGF-C upregulated Dll4 transcripts and differentially and temporally regulated the expression of Notch1 and Hes/Hey genes. Mice nullizygous for Notch4 had an increase in the closure of the lymphangiogenic fronts which correlated with reduced vessel caliber in the maturing lymphatic plexus at E14.5 and reduced branching at E16.5. Activation of Notch4 suppressed LEC migration in a wounding assay significantly more than Notch1, suggesting a dominant role for Notch4 in regulating LEC migration. Unlike Notch4 nulls, inhibition of canonical Notch signaling by expressing a dominant negative form of MAML1 (DNMAML) in Prox1+ LECs led to increased lymphatic density consistent with an increase in LEC proliferation, described for the loss of LEC Notch1. Moreover, loss of Notch4 did not affect LEC canonical Notch signaling. Thus, we propose that Notch4 signaling and canonical Notch signaling have distinct functions in the coordination of embryonic dermal lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos , Animales , Células Endoteliales/metabolismo , Linfangiogénesis/fisiología , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Receptores Notch/metabolismo , Transducción de Señal
19.
Gastroenterology ; 160(4): 1315-1329.e13, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33227282

RESUMEN

BACKGROUND & AIMS: Hepatic encephalopathy (HE) is a serious neurologic complication in patients with liver cirrhosis. Very little is known about the role of the meningeal lymphatic system in HE. We tested our hypothesis that enhancement of meningeal lymphatic drainage could decrease neuroinflammation and ameliorate HE. METHODS: A 4-week bile duct ligation model was used to develop cirrhosis with HE in rats. Brain inflammation in patients with HE was evaluated by using archived GSE41919. The motor function of rats was assessed by the rotarod test. Adeno-associated virus 8-vascular endothelial growth factor C (AAV8-VEGF-C) was injected into the cisterna magna of HE rats 1 day after surgery to induce meningeal lymphangiogenesis. RESULTS: Cirrhotic rats with HE showed significantly increased microglia activation in the middle region of the cortex (P < .001) as well as increased neuroinflammation, as indicated by significant increases in interleukin 1ß, interferon γ, tumor necrosis factor α, and ionized calcium binding adaptor molecule 1 (Iba1) expression levels in at least 1 of the 3 regions of the cortex. Motor function was also impaired in rats with HE (P < .05). Human brains of patients with cirrhosis with HE also exhibited up-regulation of proinflammatory genes (NFKB1, IbA1, TNF-α, and IL1ß) (n = 6). AAV8-VEGF-C injection significantly increased meningeal lymphangiogenesis (P = .035) and tracer dye uptake in the anterior and middle regions of the cortex (P = .006 and .003, respectively), their corresponding meninges (P = .086 and .006, respectively), and the draining lymph nodes (P = .02). Furthermore, AAV8-VEGF-C decreased microglia activation (P < .001) and neuroinflammation and ameliorated motor dysfunction (P = .024). CONCLUSIONS: Promoting meningeal lymphatic drainage and enhancing waste clearance improves HE. Manipulation of meningeal lymphangiogenesis could be a new therapeutic strategy for the treatment of HE.


Asunto(s)
Sistema Glinfático/patología , Encefalopatía Hepática/inmunología , Cirrosis Hepática/complicaciones , Trastornos Motores/inmunología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Cisterna Magna/inmunología , Cisterna Magna/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Sistema Glinfático/inmunología , Encefalopatía Hepática/patología , Humanos , Cirrosis Hepática/inmunología , Linfangiogénesis/inmunología , Masculino , Microglía/inmunología , Microglía/patología , Trastornos Motores/patología , Ratas , Factor C de Crecimiento Endotelial Vascular/genética
20.
Heart Fail Rev ; 27(5): 1837-1856, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34735673

RESUMEN

Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.


Asunto(s)
Enfermedades Cardiovasculares , Trasplante de Corazón , Vasos Linfáticos , Corazón , Humanos , Linfangiogénesis/fisiología , Vasos Linfáticos/patología , Vasos Linfáticos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA