RESUMEN
We determined the clinical and molecular epidemiology of emerging nosocomial vancomycin-resistant Enterococcus faecium (VREfm)-causing serious bloodstream infections (BSIs) and the correlations between antibiotic resistance and virulence determinants among isolates. All isolates were confirmed by molecular methods (16SrRNA and E. faecium ddl genes) and tested for disk diffusion. PCR was used to detect aac(6')-aph(2â³), vanA and vanB resistance genes, and asa1, cylA, ace, esp, gelE and hyl virulence genes. VREfm and high-level gentamicin-resistant (HLGR) representative isolates were selected to characterize by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Of 173 isolates, 73 (42.2%), 146 (84.4%), and 0 (0.0%) were vanA-containing VREfm, aac(6')-aph(2â³)-positive HLGR, and vanB-positive. Independent predictors of VREfm infection were hematological malignancies (P = 0.001) and previous hospitalizations (P = 0.007). Observed mortality rate was 34.7%. Independent predictors of BSI-related mortality were endotracheal intubations (P < 0.001), gastrointestinal diseases (P = 0.002), and pulmonary disease (P < 0.001). All VREfm were resistant to vancomycin, teicoplanin, ciprofloxacin, and erythromycin. The esp, hyl, ace, asa1, cylA, and gelE genes were detected at 55.9, 22.5, 2.9, 2.3, 1.7, and 1.2%, respectively. The esp gene was significantly associated with VREfm compared to VSEfm (P = 0.001). PFGE analysis revealed 23 clones, with 7 major clones. The MLST analysis revealed the following five sequence types: ST80, ST17, ST117, ST132, and ST280, all belonging to CC17. The emergence and expansion of VREfm CC17 with limited antibiotic options in our hospital present a serious public health menace and represent challenges to infection control.
Asunto(s)
Bacteriemia/epidemiología , Infección Hospitalaria/epidemiología , Enterococcus faecium , Infecciones por Bacterias Grampositivas/epidemiología , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Adolescente , Adulto , Niño , Enterococcus faecium/genética , Enterococcus faecium/aislamiento & purificación , Femenino , Genotipo , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Centros de Atención Terciaria , Virulencia/genética , Adulto JovenRESUMEN
INTRODUCTION: Vancomycin-resistant Enterococcus faecium (VREfm) carrying vanA was first isolated from patient at Siriraj Hospital, Thailand in 2004. Since then, VREfm isolates have been detected increasingly in this 2500-bed university hospital. To understand the epidemiology of vanA VREfm in this setting, the isolates collected during 2004-2013 were characterized. METHODS: A total of 49 vanA VREfm isolates previously confirmed by multiplex PCR were characterized by determining resistance phenotypes to vancomycin, teicoplanin, ampicillin and ciprofloxacin by broth microdilution method. Multilocus sequence typing (MLST) and virulence genes of those isolates were investigated. The Tn1546 structure diversity was studied by long-range overlapping PCR and primer walking sequencing. RESULTS: Of all isolates studied, 9 sequence types (ST17, ST80, ST78, ST730, ST203, ST18, ST280, ST64, ST323) in clonal complex 17 and a novel ST1051 were revealed. The esp-positive isolates were 73.5%. Of all vanA operons characterized, at least 9 types of Tn1546-like structures were detected. All of vanA determinants contained 5'-end different from the Tn1546 prototype. Approximately 47% of them also carried the insertion sequence IS1251 at the intergenic region between vanS and vanH. Interestingly, another IS (ISEfa4) was found to be inside the sequence of IS1251 in ST17 isolate. CONCLUSION: Heterogeneity of vanA VREfm was observed. Nearly all of isolates studied belonged to CC17. One novel ST1051 strain was detected. Isolates in the initial period carried vanA operon similar to the prototype. The diversity of vanA determinants has been increased in the recent isolates. A novel vanA operon structure was detected.
Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Proteínas Bacterianas/genética , Enterococcus faecium/genética , Infecciones por Bacterias Grampositivas/epidemiología , Humanos , Tipificación de Secuencias Multilocus , Tailandia , Vancomicina/farmacología , Resistencia a la Vancomicina/genética , Enterococos Resistentes a la Vancomicina/genéticaRESUMEN
Vancomycin-resistant enterococcus (VRE) is a global threat to public health. Knowledge about the occurrence of vanA-carrying enterococci in broiler and environmental samples is important as antibiotic resistance can be transferred to human bacteria. The aim of this study was to investigate the presence of VRE in broiler cloacal and environmental (house) samples and to genotype the isolates. In this study, 350 swabs were collected from broiler farms. All samples were plated onto enterococcus selective agar containing 6 mg/L vancomycin and 64 mg/L ceftazidime. Minimum inhibitory concentration (MIC) values were determined for vancomycin and teicoplanin. Vancomycin-resistant Enterococcus faecium (VREfm) was isolated from 6 out of 300 (2%) broiler cloacal samples and 13 out of 50 (26%) house samples. All E. faecium isolates had vanA genes. All VREfm isolates (19 isolates) were confirmed to be 95% similar to each other. In conclusion, although 20 years have passed since the ban on avoparcin in Turkey, the present study shows that VREfm isolates are still present in broiler production and especially in broiler houses, and most importantly, a major VREfm clone was isolated from broiler cloacal and house samples.
Asunto(s)
Antibacterianos/farmacología , Pollos , Enterococcus faecium/aislamiento & purificación , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Vancomicina/farmacología , Animales , Glicopéptidos/farmacología , TurquíaRESUMEN
Enterococcus faecium isolates that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic, since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, we investigated DAP regimens (6, 8, and 10 mg/kg of body weight/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT), or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of â¼109 CFU/g, DAP doses of 6 to 8 mg/kg/day were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of â¼107 CFU/g, marked reductions in bacterial counts were observed with DAP at 6 mg/kg/day, with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT, or ERT demonstrated enhanced eradication and reduced potential for resistance, allowing de-escalation of the DAP dose. Persistence of the LiaRS substitutions was identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions that was recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and pave the way for testing these approaches in humans.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Daptomicina/farmacología , Endocarditis/tratamiento farmacológico , Enterococcus faecium/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , beta-Lactamas/farmacología , Animales , Antibacterianos/farmacocinética , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/microbiología , Válvula Aórtica/patología , Área Bajo la Curva , Carga Bacteriana , Daptomicina/farmacocinética , Modelos Animales de Enfermedad , Esquema de Medicación , Combinación de Medicamentos , Farmacorresistencia Bacteriana/genética , Sinergismo Farmacológico , Endocarditis/microbiología , Endocarditis/patología , Endocardio/efectos de los fármacos , Endocardio/microbiología , Endocardio/patología , Enterococcus faecium/genética , Enterococcus faecium/crecimiento & desarrollo , Enterococcus faecium/aislamiento & purificación , Expresión Génica , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/patología , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Ratas , Ratas Sprague-Dawley , Secuenciación Completa del Genoma , beta-Lactamas/farmacocinéticaRESUMEN
Healthcare-associated infections caused by vancomycin-resistant Enterococcus faecium (VREFM) pose a significant threat to healthcare. Confirming the relatedness of the bacterial isolates from different patients is challenging. We aimed to assess the efficacy of IR-Biotyper, multilocus sequencing typing (MLST), and core-genome MLST (cgMLST) in comparison with whole-genome sequencing (WGS) for outbreak confirmation in the neonatal intensive care unit (NICU). Twenty VREFM isolates from four neonates and ten control isolates from unrelated patients were analyzed. Genomic DNA extraction, MLST, cgMLST, and WGS were performed. An IR-Biotyper was used with colonies obtained after 24 h of incubation on tryptic soy agar supplemented with 5% sheep blood. The optimal clustering cutoff for the IR-Biotyper was determined by comparing the results with WGS. Clustering concordance was assessed using the adjusted Rand and Wallace indices. MLST and cgMLST identified sequence types (ST) and complex types (CT), revealing suspected outbreak isolates with a predominance of ST17 and CT6553, were confirmed by WGS. For the IR-Biotyper, the proposed optimal clustering cut-off range was 0.106-0.111. Despite lower within-run precision, of the IR-Biotyper, the clustering concordance with WGS was favorable, meeting the criteria for real-time screening. This study confirmed a nosocomial outbreak of VREFM in the NICU using an IR-Biotyper, showing promising results compared to MLST. Although within-run precision requires improvement, the IR-Biotyper demonstrated high discriminatory power and clustering concordance with WGS. These findings suggest its potential as a real-time screening tool for the detection of VREFM-related nosocomial outbreaks. IMPORTANCE: In this study, we evaluated the performance of the IR-Biotyper in detecting nosocomial outbreaks caused by vancomycin-resistant Enterococcus faecium, comparing it with MLST, cgMLST, and WGS. We proposed a cutoff that showed the highest concordance compared to WGS and assessed the within-run precision of the IR-Biotyper by evaluating the consistency in genetically identical strain when repeated in the same run.
Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Recién Nacido , Humanos , Animales , Ovinos , Tipificación de Secuencias Multilocus , Vancomicina , Enterococcus faecium/genética , Unidades de Cuidado Intensivo Neonatal , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Enterococos Resistentes a la Vancomicina/genética , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Brotes de Enfermedades , Análisis por ConglomeradosRESUMEN
OBJECTIVES: The aim of this systematic review was to investigate the effect of antibiotics on the eradication of multidrug-resistant organisms (MRO) in intestinal carriers. We defined multidrug-resistant organisms as vancomycin-resistant Enterococcus faecium (VREfm), and multidrug-resistant Gram-negative Enterobacterales. Methods: We searched the EMBASE, Cochrane Central, and PubMed databases from inception to medio November 2023. We included randomised and controlled clinical trials (RCTs), that investigated the effect of antibiotics on the eradication of multidrug-resistant organisms in intestinal carriers. Finally, we performed a meta-analysis. RESULTS: We included five RTCs in the systematic review. In four studies an effect of antibiotics on the eradication of MRO was shown at the end of intervention, but it was not sustained at follow-up. In the fifth study, the effect at the end of intervention was not reported, and there was no observed effect of the intervention at follow-up. We included four studies in the meta-analysis, and it suggests an effect of antibiotics on the eradication of MRO in intestinal carriers at the end of follow-up with a p-value of 0.04 (95% confidence interval 1.02-1.95). None of the studies reported a significant increase in resistance to the study drug. Gastrointestinal disorders were the most frequent non-severe adverse event. CONCLUSIONS: The effect of antibiotics on the eradication of multidrug-resistant organisms in intestinal carriers was not statistically significant in any of the five included studies; however, we found a significant effect in the pooled meta-analysis. As the confidence interval is large, we cannot determine the clinical importance of this finding, and it should be further investigated.
RESUMEN
BACKGROUND: vanB-carrying vancomycin-resistant Enterococcus faecium (VREfm) of the sequence types 80 (ST80) and ST117 have dominated Germany in the past. In 2020, our hospital witnessed a sharp increase in the proportion of vanA-positive VREfm. AIM: To attempt to understand these dynamics through whole-genome sequencing (WGS) and analysis of nosocomial transmissions. METHODS: At our hospital, the first VREfm isolate per patient, treated during 2020, was analysed retrospectively using specific vanA/vanB PCR, WGS, multi-locus sequence typing (MLST), and core-genome (cg) MLST. Epidemiologic links between VRE-positive patients were assessed using hospital occupancy data. FINDINGS: Isolates from 319 out of 356 VREfm patients were available for WGS, of which 181 (56.7%) fulfilled the ECDC definition for nosocomial transmission. The high load of nosocomial cases is reflected in the overall high clonality rate with only three dominating sequence (ST) and complex types (CT), respectively: the new emerging strain ST1299 (100% vanA, 77.4% CT1903), and the well-known ST80 (90.0% vanB, 81.0% CT1065) and ST117 (78.0% vanB, 65.0% CT71). The ST1299 isolates overall, and the subtype CT1903 in particular, showed high isolate clonality, which demonstrates impressively high spreading potential. Overall, 152 out of 319 isolates had an allelic cgMLST difference of ≤3 to another, including 91 (59.6%) ST1299. Occupancy data identified shared rooms (3.7%), shared departments (6.2%), and VRE-colonized prior room occupants (0.6%) within 30 days before diagnosis as solid epidemiological links. CONCLUSION: A new emerging VREfm clone, ST1299/CT1903/vanA, dominated our institution in 2020 and has been an important driver of the increasing VREfm rates.
Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Humanos , Vancomicina , Tipificación de Secuencias Multilocus , Enterococcus faecium/genética , Estudios Retrospectivos , Universidades , Enterococos Resistentes a la Vancomicina/genética , Infección Hospitalaria/epidemiología , Infecciones por Bacterias Grampositivas/epidemiología , Proteínas Bacterianas/genéticaRESUMEN
BACKGROUND: Vancomycin-resistant Enterococcus faecium (VREfm) are significant nosocomial pathogens. Sequence type (ST) 80 vanA-encoding VREfm predominate in Irish hospitals, but their transmission is poorly understood. AIMS: To investigate transmission and persistence of predominant complex type (CT) VREfm in two wards of an Irish hospital (H1) using whole-genome sequencing, and their intra- and inter-hospital dissemination. METHODS: Rectal screening (N = 330, September 2019 to December 2022) and environmental (N = 48, November 2022 to December 2022) E. faecium were investigated. Isolate relatedness was assessed by core-genome multi-locus sequence typing (cgMLST) and core-genome single nucleotide polymorphism (cgSNP) analysis. Likely transmission chains were identified using SeqTrack (https://graphsnp.fordelab.com/graphsnp) using cgSNP data and recovery location. Well-characterized E. faecium (N = 908) from seven Irish hospitals including H1 (June 2017 to July 2022) were also investigated. FINDINGS: Conventional MLST assigned isolates to nine STs (ST80, 82%). cgMLST identified three predominant ST80 CTs (CT2933, CT2932 and CT1916) (55% of isolates) of related isolates (≤20 allelic differences). cgSNP analysis differentiated these CTs into multiple distinct closely related genomic clusters (≤10 cgSNPs). Parisimonious network construction identified 55 likely inter- and intra-ward transmissions with epidemiological support between patients ≤30 days involving 73 isolates (≤10 cgSNPs) from seven genomic clusters. Numerous other likely transmissions over longer time periods without evident epidemiological links were identified, suggesting persistence and unidentified reservoirs contribute to dissemination. The three CTs predominated among E. faecium (N = 1286) in seven hospitals, highlighting inter-hospital spread without known epidemiological links. CONCLUSION: This study revealed the long-term intra- and inter-hospital dominance of three major CT ST80 VREfm lineages, widespread transmission and persistence, implicating unidentified reservoirs.
Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Hospitales , Enterococos Resistentes a la Vancomicina , Secuenciación Completa del Genoma , Humanos , Irlanda/epidemiología , Enterococcus faecium/genética , Enterococcus faecium/aislamiento & purificación , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/clasificación , Enterococos Resistentes a la Vancomicina/genética , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Enterococos Resistentes a la Vancomicina/clasificación , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/transmisión , Infecciones por Bacterias Grampositivas/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple , Genoma Bacteriano , GenotipoRESUMEN
Vancomycin-resistant Enterococcus faecium (VREfm) is an opportunistic pathogen among the highest global priorities regarding public and environmental health. Following One Health approach, we determined for the first time the antibiotic resistance and virulence genes, and sequence types (STs) affiliation of VREfm recovered simultaneously from marine beach waters, submarine outfall of a wastewater treatment plant and an offshore discharge of untreated sewage, and compared them with the surveillance VREfm from regional university hospital in Croatia to assess the hazard of their transmission and routes of introduction into the natural environment. Importantly, VREfm recovered from wastewater, coastal bathing waters and hospital shared similar virulence, multidrug resistance, and ST profiles, posing a major public health threat. All isolates carried the vanA gene, while one clinical isolate also possessed the vanC2/C3 gene. The hospital strains largely carried the aminoglycoside-resistance genes aac(6')-Ie-aph(2â³)-Ia, and aph(2â³)-Ib and aph(2â³)-Id, which were also predominant in the environmental isolates. The hyl gene was the most prevalent virulence gene. The isolates belonged to 10 STs of the clonal complex CC17, a major epidemic lineage associated with hospital infections and outbreaks, with ST117 and ST889 common to waterborne and hospital isolates, pointing to their sewage-driven dissemination. To gain better insight into the diversity of accompanying taxons in the surveyed water matrices, microbiome taxonomic profiling was carried out using Illumina-based 16S rDNA sequencing and their resistome features predicted using the PICRUSt2 bioinformatics tool. An additional 60 pathogenic bacterial genera were identified, among which Arcobacter, Acinetobacter, Escherichia-Shigella, Bacteroides and Pseudomonas were the most abundant and associated with a plethora of antibiotic resistance genes and modules, providing further evidence of the hazardous effects of wastewater discharges, including the treated ones, on the natural aquatic environment that should be adequately addressed from a sanitary and technological perspective.
Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Microbiota , Enterococos Resistentes a la Vancomicina , Humanos , Enterococcus faecium/genética , Vancomicina/farmacología , Vancomicina/uso terapéutico , Resistencia a la Vancomicina/genética , Aguas Residuales/microbiología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Agua , Aguas del Alcantarillado , Enterococos Resistentes a la Vancomicina/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
OBJECTIVES: Assessment of vancomycin-resistant Enterococcus faecium (VREfm) prevalence upon hospital admission and analysis of risk factors for colonization. METHODS: From 2014 to 2018, patients were recruited within 72 hours of admission to seven participating German university hospitals, screened for VREfm and questioned for potential risk factors (prior multidrug-resistant organism detection, current/prior antibiotic consumption, prior hospital, rehabilitation or long-term care facility stay, international travel, animal contact and proton pump inhibitor [PPI]/antacid therapy). Genotype analysis was done using cgMLST typing. Multivariable analysis was performed. RESULTS: In 5 years, 265 of 17,349 included patients were colonized with VREfm (a prevalence of 1.5%). Risk factors for VREfm colonization were age (adjusted OR [aOR], 1.02; 95% CI, 1.01-1.03), previous (aOR, 2.71; 95% CI, 1.87-3.92) or current (aOR, 2.91; 95% CI, 2.60-3.24) antibiotic treatment, prior multidrug-resistant organism detection (aOR, 2.83; 95% CI, 2.21-3.63), prior stay in a long-term care facility (aOR, 2.19; 95% CI, 1.62-2.97), prior stay in a hospital (aOR, 2.91; 95% CI, 2.05-4.13) and prior consumption of PPI/antacids (aOR, 1.29; 95% CI, 1.18-1.41). Overall, the VREfm admission prevalence increased by 33% each year and 2% each year of life. 250 of 265 isolates were genotyped and 141 (53.2%) of the VREfm were the emerging ST117. Multivariable analysis showed that ST117 and non-ST117 VREfm colonized patients differed with respect to admission year and prior multidrug-resistant organism detection. DISCUSSION: Age, healthcare contacts and antibiotic and PPI/antacid consumption increase the individual risk of VREfm colonization. The VREfm admission prevalence increase in Germany is mainly driven by the emergence of ST117.
Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Animales , Vancomicina/farmacología , Hospitales Universitarios , Estudios Transversales , Prevalencia , Antiácidos , Antibacterianos/farmacología , Factores de Riesgo , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiologíaRESUMEN
Rare information is available on clinical Enterococcus faecium encountered in Sardinia, Italy. This study investigated the antimicrobial susceptibility profiles and genotypic characteristics of E. faecium isolated at the University Hospital of Sassari, Italy, using the Vitek2 system and PCR, MLST, or WGS. Vitek2 revealed two VanB-type vancomycin-resistant Enterococcus faecium (VREfm) isolates (MICs mg/L = 8 and ≥32) but failed to detect vancomycin resistance in one isolate (MIC mg/L ≤ 1) despite positive genotypic confirmation of vanB gene, which proved to be vancomycin resistant by additional phenotypic methods (MICs mg/L = 8). This vanB isolate was able to increase its vancomycin MIC after exposure to vancomycin, unlike the "classic" occult vanB-carrying E. faecium, becoming detectable by Vitek 2 (MICs mg/L ≥ 32). All three E. faecium had highly mutated vanB2 operons, as part of a chromosomally integrated Tn1549 transposon, with common missense mutations in VanH and VanB2 resistance proteins and specific missense mutations in the VanW accessory protein. There were additional missense mutations in VanS, VanH, and VanB proteins in the vanB2-carrying VREfm isolates compared to Vitek2. The molecular typing revealed a polyclonal hospital-associated E. faecium population from Clade A1, and that vanB2-VREfm, and nearly half of vancomycin-susceptible E. faecium (VSEfm) analyzed, belonged to ST117. Based on core genome-MLST, ST117 strains had different clonal types (CT), excluding nosocomial transmission of specific CT. Detecting vanB2-carrying VREfm isolates by Vitek2 may be problematic, and alternative methods are needed to prevent therapeutic failure and spread.
RESUMEN
The aim of this review was to assess the efficacy and safety of Lacticaseibacillus rhamnosus GG (LGG) (previously known as Lactobacillus rhamnosus GG) for the eradication of vancomycin-resistant Enterococcus faecium (VREfm) in colonized carriers. We searched Cochrane Central, EMBASE, and the PubMed Library from inception to 21 August 2023, for randomized controlled trials (RCTs) investigating the effectiveness of LGG for the eradication of gastrointestinal carriage of VREfm. An initial screening was performed followed by a full-text evaluation of the papers. Out of 4076 articles in the original screening, six RCTs (167 participants) were included in the review. All were placebo-controlled RCTs. The meta-analysis was inconclusive with regard to the effect of LGG for clearing VREfm colonization. The overall quality of the evidence was low due to inconsistency and the small number of patients in the trials. We found insufficient evidence to support the use of LGG for the eradication of VREfm in colonized carriers. There is a need for larger RCTs with a standardized formulation and dosage of LGG in future trials.
RESUMEN
OBJECTIVES: The genetic basis for the spread of vancomycin resistance in Enterococcus faecium is largely unexplored in India. The present study aimed to investigate the plasmid diversity and variation of Tn1546 associated with vanA harbouring VREfm isolates. METHODS: A total of 122 VREfm isolates collected from blood cultures were included in this study. MLST analysis was performed on all isolates, and they were also screened for the presence of vanA and vanB genes. Whole genome sequencing was performed for a subset of fifteen VREfm isolates belonging to ST1643. RESULTS: All of the 122 VREfm isolates carried the vanA gene. Twenty-four different sequence types were seen; of these, ST1643, ST80 and ST17 were predominant. Whole genome sequencing was performed on 15 VREfm isolates belonging to ST1643. For eight isolates the vanA gene was found on pRUM-like circular plasmids, and for the remaining seven isolates, the vanA gene was found on the linear plasmids. Novel Tn1546 variants carrying vanA were found on both circular and linear plasmids. Interestingly, co-presence of vanA and optrA were seen in the backbone of three linear plasmids. CONCLUSION: Multiple vanA-carrying plasmids and Tn1546-like elements were involved in the dissemination of vancomycin resistance in VREfm. The co-occurrence of Tn1546 carrying vanA and Tn554 family transposon carrying optrA on the backbone of plasmids is worrisome. The dissemination of such plasmids may pose treatment and infection control challenges.
Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Enterococcus faecium/genética , Humanos , Tipificación de Secuencias Multilocus , Plásmidos/genética , Resistencia a la Vancomicina/genética , Enterococos Resistentes a la Vancomicina/genéticaRESUMEN
In Germany, there is an increasing amount of vancomycin-resistant Enterococcus faecium (VREfm) isolates in bloodstream infections (BSIs); however, estimates on recent incidences and disease burden are missing. We aim to estimate the incidence and calculate the annual disease burden in disease-adjusted life years (DALYs) for BSIs due to VREfm in Germany between 2015 and 2020 to support informed decision-making in the field of antimicrobial resistance (AMR). We used the Antibiotic Resistance Surveillance (ARS) system data to obtain incidence estimates. The estimated incidences were used in the Burden of Communicable Disease in Europe (BCoDE) toolkit to calculate the attributable DALYs. A total of 3417 VREfm blood culture-positive isolates were observed within ARS. The estimated incidence of VREfm-BSIs per 100,000 inhabitants increased from 1.4 (95% Uncertainty Interval [UI]: 0.8−1.9) in 2015 to 2.9 (95% UI: 2.4−3.3) in 2020. The estimated burden, expressed in DALYs per 100,000 inhabitants, increased from 8.5 (95% UI: 7.3−9.7; YLD = 0.9, YLL = 7.6) in 2015 to 15.6 (95% UI: 14.6−16.6; YLD = 1.6, YLL = 14) in 2020. The most affected groups within the observed period are the 65−69-year-old males with 262.9 DALYs per 100,000 inhabitants, and in the younger age groups (<30 years), the under-one-year-old with 43.1 DALYs per 100,000 inhabitants and 34.5 DALYs for male and female, respectively. The increasing DALYs of BSIs due to VREfm require targeted prevention and control measures to address their unequal distribution across gender and age, especially for older hospitalized patients, neonates, and infants in Germany.
RESUMEN
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has recently become a useful analytical approach for microbial identification. The presence and absence of specific peaks on MS spectra are commonly used to identify the bacterial species and predict antibiotic-resistant strains. However, the conventional approach using few single peaks would result in insufficient prediction power without using complete information of whole MS spectra. In the past few years, machine learning algorithms have been successfully applied to analyze the MALDI-TOF MS peaks pattern for rapid strain typing. In this study, we developed a convolutional neural network (CNN) method to deal with the complete information of MALDI-TOF MS spectra for detecting Enterococcus faecium, which is one of the leading pathogens in the world. We developed a CNN model to rapidly and accurately predict vancomycin-resistant Enterococcus faecium (VREfm) samples from the whole mass spectra profiles of clinical samples. The CNN models demonstrated good classification performances with the average area under the receiver operating characteristic curve (AUROC) of 0.887 when using external validation data independently. Additionally, we employed the score-class activation mapping (CAM) method to identify the important features of our CNN models and found some discriminative signals that can substantially contribute to detecting the ion of resistance. This study not only utilized the complete information of MALTI-TOF MS data directly but also provided a practical means for rapid detection of VREfm using a deep learning algorithm.
RESUMEN
OBJECTIVES: To investigate the usefulness of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) typing as a first-line epidemiological tool in a nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VREfm). METHODS: Fifty-five VREfm isolates, previously characterized by whole-genome sequencing (WGS), were included and analysed by MALDI-TOF MS. To take peak reproducibility into account, ethanol/formic acid extraction and other steps of the protocol were conducted in triplicate. Twenty-seven spectra were generated per isolate, and spectra were visually inspected to determine discriminatory peaks. The presence or absence of these was recorded in a peak scheme. RESULTS: Nine discriminatory peaks were identified. A characteristic pattern of these could distinguish between the three major WGS groups: WGS I, WGS II and WGS III. Only one of 38 isolates belonging to WGS I, WGS II or WGS III was misclassified. However, ten of the 17 isolates not belonging to WGS I, II or III displayed peak patterns indistinguishable from those of the outbreak strain. CONCLUSIONS: Using visual inspection of spectra, MALDI-TOF MS typing proved to be useful in differentiating three VREfm outbreak clones from each other. However, as non-outbreak isolates could not be reliably differentiated from outbreak clones, the practical value of this typing method for VREfm outbreak management was limited in our setting.
Asunto(s)
Enterococcus faecium/clasificación , Enterococos Resistentes a la Vancomicina/clasificación , Técnicas de Tipificación Bacteriana/métodos , Infección Hospitalaria/microbiología , Brotes de Enfermedades , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
OBJECTIVES: The aim of our study was to characterize and elicit the genetic relatedness of emerging vancomycin-resistant enterococci (VRE) isolated between 2012 and 2015 at a teaching hospital in Debrecen, Hungary. RESULTS: Altogether 43 nonduplicate vancomycin-resistant Enterococcus faecium (VREfm) clinical isolates were obtained. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used for species identification. Isolates showed 100% resistance to ampicillin and ciprofloxacin while 81.4% were resistant to gentamicin. PCR analysis revealed the presence of VanB in 40 and VanA in 3 isolates. Among ace, agg, and esp virulence genes only esp was found in seven cases. Modified microtiter-plate test showed 13 weak and 4 moderate biofilm producer isolates. Pulsed-field gel electrophoresis revealed nine pulsotypes. According to multilocus sequence typing all of the tested isolates belonged to clonal complex 17 (CC17). CONCLUSIONS: We report on the alarming emergence of multidrug-resistant VREfm belonging to CC17 at a tertiary hospital in Eastern Hungary. This is the first report of sequence types 412 and 364 from this region. Although outbreak did not occur the increasing prevalence of VREfm is of concern and dissemination must be prevented with proper infection control measures and regular VRE screening.