Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Antimicrob Agents Chemother ; 67(11): e0056323, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902403

RESUMEN

Daptomycin (DAP) is effective against methicillin-resistant Staphylococcus aureus (MRSA). However, reduced susceptibility to DAP in MRSA may lead to treatment failures. We aim to determine the distribution of DAP minimum inhibitory concentrations (MICs) and DAP heteroresistance (hDAP) among MRSA lineages in China. A total of 472 clinical MRSA isolates collected from 2015 to 2017 in China were examined for DAP susceptibility. All isolates (n = 472) were found to be DAP susceptible, but 35.17% (166/472) of them exhibited a high DAP MIC (MIC >0.5 µg/mL). The high DAP MIC group contained a larger proportion of isolates with a higher vancomycin or teicoplanin MIC (>1.5 µg/mL) than the low DAP MIC group (19.3% vs 7.8%, P < 0.001; 22.3% vs 8.2%, P < 0.001). We compared the clonal complex (CC) distributions and clinical characteristics in MRSA isolates stratified by DAP MIC. CC5 isolates were less susceptible to DAP (MIC50 = 1 µg/mL) than CC59 isolates (MIC50 = 0.5 µg/mL, P < 0.001). Population analysis profiling revealed that 5 of 10 ST5 and ST59 DAP-susceptible MRSA isolates investigated exhibited hDAP. The results also showed that CC5 MRSA with an agrA mutation (I238K) had a higher DAP MIC than those with a wild-type agrA (P < 0.001). The agrA-I238K mutation was found to be associated with agr dysfunction as indicated by the loss of δ-hemolysin production. In addition, agr/psmα defectiveness was associated with hDAP in MRSA. Whole-genome sequencing analysis revealed mutations in mprF and walR/walK in DAP-resistant subpopulations, and most DAP-resistant subpopulations (6/8, 75%) were stable. Our study suggests that the increased DAP resistance and hDAP in MRSA may threaten the effectiveness against MRSA infections.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Daptomicina/farmacología , Daptomicina/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Vancomicina/farmacología , Pruebas de Sensibilidad Microbiana
2.
Lett Appl Microbiol ; 71(5): 451-458, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32654154

RESUMEN

Enterococcus faecalis is the dominant pathogen for persistent periapical periodontitis. The chlorhexidine (CHX) is used as conversional irrigation agents during endodontic root canal therapy. It was reported that the antisense walR RNA (ASwalR) suppressed the biofilm organization. The aim of this study was to investigate the antimicrobial effects of novel graphene oxide (GO)-polyethylenimine (PEI)-based antisense walR (ASwalR) on the inhibition of E. faecalis biofilm and its susceptibility to chlorhexidine. The recombinant ASwalR plasmids were modified with a gene encoding enhanced green fluorescent protein (ASwalR-eGFP) as a reporter gene so that the transformation efficiency could be evaluated by the fluorescence intensity. The GO-PEI-based ASwalR vector transformation strategy was developed to be transformed into E. faecalis and to over-produce ASwalR in biofilms. Colony forming units (CFU) and confocal laser scanning microscopy were used to investigate whether the antibacterial properties of antisense walR interference strategy sensitize E. faecalis biofilm to the CHX. The results indicated that overexpression of ASwalR by GO-PEI-based transformation strategy could inhibit biofilm formation, decrease the EPS synthesis and increase the susceptibility of E. faecalis biofilms to CHX. Our reports demonstrated that antisense walR RNA will be a supplementary strategy in treating E. faecalis with irrigation agents.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Clorhexidina/farmacología , Enterococcus faecalis/crecimiento & desarrollo , Grafito/farmacología , ARN sin Sentido/genética , Proteínas Bacterianas/genética , Enterococcus faecalis/efectos de los fármacos , Humanos , Microscopía Confocal , Óxidos/farmacología , Periodontitis Periapical/microbiología , Polietileneimina/farmacología , Irrigantes del Conducto Radicular/farmacología
3.
Biosci Biotechnol Biochem ; 82(5): 741-751, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29514560

RESUMEN

The WalK/WalR two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved in gram-positive bacteria, including several important pathogens. The WalK/WalR TCS appears to be involved in the growth of most bacterial species encoding it. Previous studies have indicated conserved functions of this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism. Because of such effects on essential functions, this system is considered a potential target for anti-infective therapeutics. In this review, we discuss the role of WalK/WalR TCS in different bacterial cells, focusing on the function of the genes in its regulon as well as the variations in walRK operon structure, its auxiliary proteins, and the composition of its regulon. We also discuss recent experimental data addressing its essential function and the potential type of signal being sensed by B. subtilis. This review also focuses on the potential future research.

4.
mBio ; : e0226223, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37850732

RESUMEN

Among the 16 two-component systems in the opportunistic human pathogen Staphylococcus aureus, only WalKR is essential. Like the orthologous systems in other Bacillota, S. aureus WalKR controls autolysins involved in peptidoglycan remodeling and is therefore intimately involved in cell division. However, despite the importance of WalKR in S. aureus, the basis for its essentiality is not understood and the regulon is poorly defined. Here, we defined a consensus WalR DNA-binding motif and the direct WalKR regulon by using functional genomics, including chromatin immunoprecipitation sequencing, with a panel of isogenic walKR mutants that had a spectrum of altered activities. Consistent with prior findings, the direct regulon includes multiple autolysin genes. However, this work also revealed that WalR directly regulates at least five essential genes involved in lipoteichoic acid synthesis (ltaS): translation (rplK), DNA compaction (hup), initiation of DNA replication (dnaA, hup) and purine nucleotide metabolism (prs). Thus, WalKR in S. aureus serves as a polyfunctional regulator that contributes to fundamental control over critical cell processes by coordinately linking cell wall homeostasis with purine biosynthesis, protein biosynthesis, and DNA replication. Our findings further address the essentiality of this locus and highlight the importance of WalKR as a bona fide target for novel anti-staphylococcal therapeutics. IMPORTANCE The opportunistic human pathogen Staphylococcus aureus uses an array of protein sensing systems called two-component systems (TCS) to sense environmental signals and adapt its physiology in response by regulating different genes. This sensory network is key to S. aureus versatility and success as a pathogen. Here, we reveal for the first time the full extent of the regulatory network of WalKR, the only staphylococcal TCS that is indispensable for survival under laboratory conditions. We found that WalKR is a master regulator of cell growth, coordinating the expression of genes from multiple, fundamental S. aureus cellular processes, including those involved in maintaining cell wall metabolism, protein biosynthesis, nucleotide metabolism, and the initiation of DNA replication.

5.
Front Microbiol ; 13: 820089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558126

RESUMEN

In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.

6.
Microbiol Spectr ; 10(5): e0256722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36173303

RESUMEN

Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Interestingly, all characterized CmR mutants harbored a combination of mutations in walK and clpP or clpC. In vitro and in vivo analyses showed that the mutations in the Clp proteins abolished ClpP or ClpC activity, and the deletion of clpP rendered S. aureus but not all Bacillus subtilis strains cervimycin-resistant. The essential gene walK was the second mutational hotspot in the CmR S. aureus strains, which decreased WalK activity in vitro and generated a vancomycin-intermediate resistant phenotype, with a thickened cell wall, a lower growth rate, and reduced cell lysis. Transcriptomic and proteomic analyses revealed massive alterations in the CmR strains compared to the parent strain S. aureus SG511, with major shifts in the heat shock regulon, the metal ion homeostasis, and the carbohydrate metabolism. Taken together, mutations in the heat shock genes clpP, clpC, and dnaK, and the walK kinase gene in CmR mutants induced a vancomycin-intermediate resistant phenotype in S. aureus, suggesting cell wall metabolism or the Clp protease system as primary target of cervimycin. IMPORTANCE Staphylococcus aureus is a frequent cause of infections in both the community and hospital setting. Resistance development of S. aureus to various antibiotics is a severe problem for the treatment of this pathogen worldwide. New powerful antimicrobial agents against Gram-positives are needed, since antibiotics like vancomycin fail to cure vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-resistant enterococci (VRE) infections. One candidate substance with promising activity against these organisms is cervimycin, which is an antibiotic complex with a yet unknown mode of action. In our study, we provide first insights into the mode of action of cervimycins. By characterizing cervimycin-resistant S. aureus strains, we revealed the Clp system and the essential kinase WalK as mutational hotspots for cervimycin resistance in S. aureus. It further emerged that cervimycin-resistant S. aureus strains show a VISA phenotype, indicating a role of cervimycin in perturbing the bacterial cell envelope.


Asunto(s)
Productos Biológicos , Staphylococcus aureus Resistente a Meticilina , Policétidos , Infecciones Estafilocócicas , Humanos , Vancomicina/farmacología , Vancomicina/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Resistencia a la Vancomicina/genética , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Proteómica , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Fenotipo , Policétidos/metabolismo , Aminoácidos/metabolismo
7.
Exp Ther Med ; 21(1): 69, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33365069

RESUMEN

Enterococcus faecalis (E. faecalis) is regarded as the major pathogen for persistent periapical periodontitis. The aim of the present study was to investigate the role of antisense walR RNA in the regulation of adjacent downstream genes. Reverse transcription-PCR assays were performed to validate walR. Adjacent downstream genes walK, EF1195, EF1196, and EF1197 were co-transcribed and detect antisense walR RNA. Northern blotting and 5'-rapid amplification of cDNA ends (5'-RACE) assays were conducted to detect and confirm a novel walR antisense (ASwalR) RNA. ASwalR overexpression mutants were constructed, and the biofilm biomass was determined using a crystal violet microtiter assay. The present study detected and confirmed a 550-bp noncoding antisense RNA with the potential to attenuate the activities of the essential response regulator WalR. The levels of antisense walR RNA transcripts were inversely associated with the production of WalR protein. It was showed that overexpression of ASwalR leads to reduced biofilm formation and exopolysaccharide synthesis. Furthermore, the pathogenicity of E. faecalis was markedly decreased by ASwalR overexpression in an in vivo periapical periodontitis model. In summary, the present study detected a novel antisense walR RNA that leads to a reduction in biofilm formation and the pathogenicity of E. faecalis. Collectively, the data suggest a role for ASwalR as a post-transcriptional modulator of the WalR regulator in E. faecalis.

8.
Clin Microbiol Infect ; 27(6): 910.e1-910.e8, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32866650

RESUMEN

OBJECTIVES: Dalbavancin is a lipoglycopeptide active against methicillin-resistant Staphylococcus aureus (MRSA). Its long half-life (8.5-16 days) allows for once-weekly or single-dose treatments but could prolong the mutant selection window, promoting resistance and cross-resistance to related antimicrobials such as vancomycin. The objective of this study was to evaluate the capacity of post-distributional pharmacokinetic exposures of dalbavancin to select for resistance and cross-resistance in MRSA. METHODS: We simulated average, post-distributional exposures of single-dose (1500 mg) dalbavancin (fCmax 9.9 µg/mL, ß-elimination t1/2 204 h) in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model for 28 days (672 h) against five MRSA strains and one methicillin-susceptible strain (MSSA). Samples were collected at least daily, and surviving colonies were enumerated and screened for resistance on drug-free and dalbavancin-supplemented medium respectively. Isolates from resistance screening plates were subjected to whole-genome sequencing (WGS) and susceptibly testing against dalbavancin, vancomycin, daptomycin, and six ß-lactams with varying penicillin-binding protein (PBP) affinities. RESULTS: Dalbavancin was bactericidal against most strains for days 1-4 before regrowth of less susceptible subpopulations occurred. Isolates with eight-fold increases in dalbavancin MIC were detected as early as day 4 but increased 64-128-fold in all models by day 28. Vancomycin and daptomycin MICs increased 4-16-fold, exceeding the susceptibly breakpoints for both antibiotics; ß-lactam MICs generally decreased by two-to eight-fold, suggesting a dalbavancin-ß-lactam seesaw effect, but increased by eight-fold or more in certain isolates. Resistant isolates carried mutations in a variety of genes, most commonly walKR, apt, stp1, and atl. CONCLUSIONS: In our in vitro system, post-distributional dalbavancin exposures selected for stable mutants with reduced susceptibility to dalbavancin, vancomycin, and daptomycin, and generally increased susceptibility to ß-lactams in all strains of MRSA tested. The clinical significance of these findings remains unclear, but created an opportunity to genotype a unique collection of dalbavancin-resistant strains for the first time. Mutations involved genes previously associated with vancomycin intermediate susceptibility and daptomycin non-susceptibility, most commonly walKR-associated genes.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Teicoplanina/análogos & derivados , Vancomicina/farmacología , Técnicas Bacteriológicas , Humanos , Teicoplanina/farmacología
9.
J Dent Sci ; 15(1): 65-74, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32257002

RESUMEN

BACKGROUND/PURPOSE: Enterococcus faecalis (E. faecalis) is considered a predominant pathogen for persistent periapical infections. Antisense walR (ASwalR) RNA was reported to inhibit the biofilm formation and sensitized E. faecalis to calcium hydroxide medication. The aims of this study were to investigate whether the graphene oxide (GO) nanosheets could be used to enhance antibacterial activity of ASwalR RNA for E. faecalis in periapical periodontitis. MATERIALS AND METHODS: We developed a graphene-based plasmid transformation system by loading antisense walR plasmid with GO-polyethylenimine (PEI) complexes (GO-PEI-ASwalR). The particle size distributions and zeta-potential of the GO-PEI-ASwalR were evaluated. Then, ASwalR plasmids were labeled with gene encoding enhanced green fluorescent protein (ASwalR-eGFP). The transformation efficiencies and the bacterial viability of E. faecalis were evaluated by confocal laser scanning microscopy. Quantitative real-time PCR assays were used to investigate the expressions of E. faecalis virulent genes after transformed by GO-PEI-ASwalR. Also, the antibacterial properties of the GO-PEI-ASwalR were validated in the rat periapical periodontitis model. RESULTS: We showed that GO-PEI could efficiently deliver the ASwalR plasmid into E. faecalis cell. GO-PEI-ASwalR significantly reduced virulent-associated gene expressions. Furthermore, GO-PEI-ASwalR suppressed biofilm aggregation and improved bactericidal effects using infected canal models in vitro. In four-weeks periapical infective rat models, the GO-PEI-ASwalR strains remarkably reduced the periapical lesion size. CONCLUSION: Transformation efficiency and antibacterial prosperity of ASwalR can be marked improved by GO-PEI based delivery system for E. faecalis infections.

10.
Virulence ; 11(1): 825-838, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32614642

RESUMEN

STREPTOCOCCUS SUIS: serotype 2 (SS2) is a serious zoonotic pathogen which causes symptoms of streptococcal toxic shock syndrome (STSS) and septicemia; these symptoms suggest that SS2 may have evade innate immunity. Phagocytosis is an important innate immunity process where phagocytosed pathogens are killed by lysosome enzymes, reactive oxygen, and nitrogen species, and acidic environments in macrophages following engulfment. A previously constructed mutant SS2 library was screened, revealing 13 mutant strains with decreased phagocytic resistance. Through inverse PCR, the transposon insertion sites were determined. Through bioinformatic analysis, the 13 disrupted genes were identified as Cps2F, 3 genes belonging to ABC transporters, WalR, TehB, rpiA, S-transferase encoding gene, prs, HsdM, GNAT family N-acetyltransferase encoding gene, proB, and upstream region of DnaK. Except for the capsular polysaccharide biosynthesis associated Cps2F, the other genes had not been linked to a role in anti-phagocytosis. The survival ability in macrophages and whole blood of randomly picked mutant strains were significantly impaired compared with wild-type ZY05719. The virulence of the mutant strains was also attenuated in a mouse infection model. In the WalR mutant, the transcription of HP1065 decreased significantly compared with wild-type strain, indicating WalR might regulated HP1065 expression and contribute to the anti-phagocytosis of SS2. In conclusion, we identified 13 genes that influenced the phagocytosis resistant ability of SS2, and many of these genes have not been reported to be associated with resistance to phagocytosis. Our work provides novel insight into resistance to phagocytosis, and furthers our understanding of the pathogenesis mechanism of SS2.


Asunto(s)
Elementos Transponibles de ADN , Genes Bacterianos , Macrófagos/microbiología , Fagocitosis , Streptococcus suis/genética , Animales , Modelos Animales de Enfermedad , Femenino , Biblioteca de Genes , Evasión Inmune , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación , Serogrupo , Organismos Libres de Patógenos Específicos , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/clasificación , Streptococcus suis/inmunología , Virulencia/genética
11.
Microorganisms ; 8(6)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526915

RESUMEN

Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.

12.
Elife ; 92020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31976860

RESUMEN

Bacillus subtilis can measure the activity of the enzymes that remodel the cell wall to ensure that the levels of activity are 'just right'.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Pared Celular , Hidrólisis , Transducción de Señal
13.
J Endod ; 45(3): 295-301.e2, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30803536

RESUMEN

INTRODUCTION: Enterococcus faecalis is considered a predominant pathogen for persistent periapical infections and in addition is reportedly resistant to calcium hydroxide medication. The WalRK 2-component system of E. faecalis is essential for environmental adaptation, survival, and virulence. The goal of this study was to investigate the potential roles of walR in the regulation of biofilm aggregation, alkaline stress, and susceptibility to calcium hydroxide (CH) medication. METHODS: Antisense walR RNA (aswalR) overexpression strains were constructed. Exopolysaccharide (EPS) production and bacterial viability of E. faecalis biofilms were evaluated by confocal laser scanning microscopy. Quantitative real-time polymerase chain reaction was used to investigate the expressions of virulent factor genes. The proportion of viable bacteria and EPS production in dentin were assessed after CH medication. RESULTS: We showed that walR interference by aswalR RNA leads to a reduction in the dextran-dependent aggregation in E. faecalis biofilm. The overexpression of aswalR reduced the transcripts of the virulence genes and alkaline stress tolerance ability. Furthermore, the down-regulation of walR sensitized E. faecalis in infected canals to CH medication associated with inhibiting EPS synthesis. CONCLUSIONS: The data suggest a role for the walR regulator in the susceptibility to CH associated with dispelling the EPS matrix, which could be explored as a potential supplementary therapy for the management of root canal infection.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Biopelículas , Hidróxido de Calcio/farmacología , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/fisiología , Genes Bacterianos/genética , Genes Bacterianos/fisiología , Adaptación Fisiológica/genética , Cavidad Pulpar/microbiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/patogenicidad , Humanos , Periodontitis Periapical/microbiología , Pulpitis/microbiología , Virulencia/genética
14.
Elife ; 82019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31808740

RESUMEN

Bacterial cells are encased in a peptidoglycan (PG) exoskeleton that protects them from osmotic lysis and specifies their distinct shapes. Cell wall hydrolases are required to enlarge this covalently closed macromolecule during growth, but how these autolytic enzymes are regulated remains poorly understood. Bacillus subtilis encodes two functionally redundant D,L-endopeptidases (CwlO and LytE) that cleave peptide crosslinks to allow expansion of the PG meshwork during growth. Here, we provide evidence that the essential and broadly conserved WalR-WalK two component regulatory system continuously monitors changes in the activity of these hydrolases by sensing the cleavage products generated by these enzymes and modulating their levels and activity in response. The WalR-WalK pathway is conserved among many Gram-positive pathogens where it controls transcription of distinct sets of PG hydrolases. Cell wall remodeling in these bacteria may be subject to homeostatic control mechanisms similar to the one reported here.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Transducción de Señal , Endopeptidasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hidrólisis , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo
15.
Int J Biol Macromol ; 96: 257-264, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27988294

RESUMEN

WalRK two-component system of Bacillus anthracis potentially regulates multiple genes spanning diverse cellular functions. Its constituent response regulator (RR), WalR belongs to the OmpR/PhoB family which possesses a winged helix-turn-helix motif for DNA binding. An in silico knowledge based model of WalR C-terminal DNA binding domain in complex with its ftsE promoter region binding motif was used to identify specific residues of the recognition helix important for DNA binding. The model was validated by mutagenesis in conjunction with in vitro DNA binding analysis. The ftsE promoter region DNA binding motif was also varied. Optimal binding of WalR to DNA required the presence of both half-sites in its binding motif. Substitution of invariant bases of WalR DNA binding motif abrogated the binding whereas changes at variable motif positions governed affinity. D199 was not in direct contact with the DNA but its substitution modified the WalR-DNA specificity indicating the importance of contact avoidance by this residue for DNA specificity. This represents the first in-depth study of RR-DNA interaction from B. anthracis.


Asunto(s)
Bacillus anthracis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Secuencia de Bases , ADN/química , ADN/genética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Secuencias Repetidas en Tándem
16.
J Gen Appl Microbiol ; 63(4): 212-221, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28674376

RESUMEN

The WalK/WalR two-component system is essential for cell wall metabolism and thus for cell growth in Bacillus subtilis. Waldiomycin was previously isolated as an antibiotic that targeted WalK, the cognate histidine kinase (HK) of the response regulator, WalR, in B. subtilis. To gain further insights into the action of waldiomycin on WalK and narrow down its site of action, mutations were introduced in the H-box region, a well-conserved motif of the bacterial HKs of WalK. The half-maximal inhibitory concentrations (IC50s) of waldiomycin against purified WalK protein with triple substitutions in the H-box region, R377M/R378M/S385A and R377M/R378M/R389M, were 26.4 and 55.1 times higher than that of the wild-type protein, respectively, indicating that these residues of WalK are crucial for the inhibitory effect of waldiomycin on its kinase activity. Surprisingly, this antibiotic severely affected cell growth in a minimum inhibitory concentration (MIC) assay, but not transcription of WalR-regulated genes or cell morphology in B. subtilis strains that harbored the H-box triple substitutions on the bacterial chromosome. We hypothesized that waldiomycin targets other HKs as well, which may, in turn, sensitize B. subtilis cells with the H-box triple mutant alleles of the walK gene to waldiomycin. Waldiomycin inhibited other HKs such as PhoR and ResE, and, to a lesser extent, CitS, whose H-box region is less conserved. These results suggest that waldiomycin perturbs multiple cellular processes in B. subtilis by targeting the H-box region of WalK and other HKs.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Histidina Quinasa/genética , Quinonas/farmacología , Antibacterianos/farmacología , Bacillus subtilis/enzimología , Proteínas Bacterianas/efectos de los fármacos , Pared Celular/metabolismo , Histidina Quinasa/efectos de los fármacos , Concentración 50 Inhibidora , Mutación , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
17.
Res Microbiol ; 164(10): 998-1008, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24125693

RESUMEN

The actin homolog MreBH governs cell morphogenesis of Bacillus subtilis through localization of the cell wall hydrolase LytE. The alternative sigma factor SigI of B. subtilis coordinately regulates transcription of mreBH and lytE. Transcription of sigI, mreBH and lytE is heat-inducible. The essential response regulator WalR (YycF) plays a key role in coordinating cell wall metabolism with cell proliferation. We now demonstrate that mreBH is a new member of the WalR regulon. We also found that WalR can positively and directly regulate sigI transcription under heat stress through a binding site located upstream of the σ(I) promoter of sigI. In addition, we found that a WalR binding site located upstream of the SigI binding site in the regulatory region of lytE is important for lytE expression under heat stress. Moreover, we found that walR is a new member of the heat shock stimulon of B. subtilis. WalR appears to coordinately and positively regulate transcription of sigI, mreBH and lytE under heat stress. Finally, our work shows for the first time that WalR can stimulate activities of σ(I) promoters under heat stress.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/efectos de la radiación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , N-Acetil Muramoil-L-Alanina Amidasa/biosíntesis , Factor sigma/biosíntesis , Transcripción Genética/efectos de la radiación , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Pared Celular/metabolismo , Calor , Regulón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA