Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.348
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2402726121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083420

RESUMEN

Since prion diseases result from infection and neurodegeneration of the central nervous system (CNS), experimental characterizations of prion strain properties customarily rely on the outcomes of intracerebral challenges. However, natural transmission of certain prions, including those causing chronic wasting disease (CWD) in elk and deer, depends on propagation in peripheral host compartments prior to CNS infection. Using gene-targeted GtE and GtQ mice, which accurately control cellular elk or deer PrP expression, we assessed the impact that peripheral or intracerebral exposures play on CWD prion strain propagation and resulting CNS abnormalities. Whereas oral and intraperitoneal transmissions produced identical neuropathological outcomes in GtE and GtQ mice and preserved the naturally convergent conformations of elk and deer CWD prions, intracerebral transmissions generated CNS prion strains with divergent biochemical properties in GtE and GtQ mice that were changed compared to their native counterparts. While CWD replication kinetics remained constant during iterative peripheral transmissions and brain titers reflected those found in native hosts, serial intracerebral transmissions produced 10-fold higher prion titers and accelerated incubation times. Our demonstration that peripherally and intracerebrally challenged Gt mice develop dissimilar CNS diseases which result from the propagation of distinct CWD prion strains points to the involvement of tissue-specific cofactors during strain selection in different host compartments. Since peripheral transmissions preserved the natural features of elk and deer prions, whereas intracerebral propagation produced divergent strains, our findings illustrate the importance of experimental characterizations using hosts that not only abrogate species barriers but also accurately recapitulate natural transmission routes of native strains.


Asunto(s)
Encéfalo , Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/transmisión , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Priones/metabolismo , Priones/genética , Priones/patogenicidad , Ratones Transgénicos
2.
EMBO Rep ; 25(10): 4410-4432, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251827

RESUMEN

The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.


Asunto(s)
Proteínas de Drosophila , Cuerpo Adiposo , Glucólisis , Larva , Músculos , Transducción de Señal , Serina-Treonina Quinasas TOR , Factor de Necrosis Tumoral alfa , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpo Adiposo/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Larva/metabolismo , Larva/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Músculos/metabolismo , Músculos/patología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de la Membrana , Proteínas Tirosina Quinasas Receptoras
3.
EMBO Rep ; 25(1): 334-350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191872

RESUMEN

Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Ratones , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Ciervos/metabolismo , Suelo
4.
Proc Natl Acad Sci U S A ; 120(34): e2215095120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585460

RESUMEN

Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-ß), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-ß. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-ß/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.


Asunto(s)
Neoplasias Pancreáticas , Factor de Crecimiento Transformador beta , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Caquexia/genética , Atrofia Muscular/genética , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(15): e2221060120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014866

RESUMEN

Prions are proteinaceous infectious particles that replicate by structural conversion of the host-encoded cellular prion protein (PrPC), causing fatal neurodegenerative diseases in mammals. Species-specific amino acid substitutions (AAS) arising from single nucleotide polymorphisms within the prion protein gene (Prnp) modulate prion disease pathogenesis, and, in several instances, reduce susceptibility of homo- or heterozygous AAS carriers to prion infection. However, a mechanistic understanding of their protective effects against clinical disease is missing. We generated gene-targeted mouse infection models of chronic wasting disease (CWD), a highly contagious prion disease of cervids. These mice express wild-type deer or PrPC harboring the S138N substitution homo- or heterozygously, a polymorphism found exclusively in reindeer (Rangifer tarandus spp.) and fallow deer (Dama dama). The wild-type deer PrP-expressing model recapitulated CWD pathogenesis including fecal shedding. Encoding at least one 138N allele prevented clinical CWD, accumulation of protease-resistant PrP (PrPres) and abnormal PrP deposits in the brain tissue. However, prion seeding activity was detected in spleens, brains, and feces of these mice, suggesting subclinical infection accompanied by prion shedding. 138N-PrPC was less efficiently converted to PrPres in vitro than wild-type deer (138SS) PrPC. Heterozygous coexpression of wild-type deer and 138N-PrPC resulted in dominant-negative inhibition and progressively diminished prion conversion over serial rounds of protein misfolding cyclic amplification. Our study indicates that heterozygosity at a polymorphic Prnp codon can confer the highest protection against clinical CWD and highlights the potential role of subclinical carriers in CWD transmission.


Asunto(s)
Ciervos , Enfermedades por Prión , Priones , Reno , Enfermedad Debilitante Crónica , Ratones , Animales , Priones/metabolismo , Proteínas Priónicas/genética , Ciervos/genética , Enfermedad Debilitante Crónica/genética , Ratones Transgénicos , Enfermedades por Prión/genética
6.
Dev Biol ; 517: 28-38, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293747

RESUMEN

Cachexia and systemic organ wasting are metabolic syndrome often associated with cancer. However, the exact mechanism of cancer associated cachexia like syndrome still remain elusive. In this study, we utilized a scribble (scrib) knockdown induced hindgut tumor to investigate the role of JNK kinase in cachexia like syndrome. Scrib, a cell polarity regulator, also acts as a tumor suppressor gene. Its loss and mis-localization are reported in various type of malignant cancer-like breast, colon and prostate cancer. The scrib knockdown flies exhibited male lethality, reduced life span, systemic organ wasting and increased pJNK level in hindgut of female flies. Interestingly, knocking down of human JNK Kinase analogue, hep, in scrib knockdown background in hindgut leads to restoration of loss of scrib mediated lethality and systemic organ wasting. Our data showed that scrib loss in hindgut is capable of inducing cancer associated cachexia like syndrome. Here, we firstly report that blocking the JNK signaling pathway effectively rescued the cancer cachexia induced by scrib knockdown, along with its associated gut barrier disruption. These findings have significantly advanced our understanding of cancer cachexia and have potential implications for the development of therapeutic strategies. However, more research is needed to fully understand the complex mechanisms underlying this condition.

7.
J Biol Chem ; 300(9): 107617, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089583

RESUMEN

While animal prion diseases are a threat to human health, their zoonotic potential is generally inefficient because of interspecies prion transmission barriers. New animal models are required to provide an understanding of these prion transmission barriers and to assess the zoonotic potential of animal prion diseases. To address this goal, we generated Drosophila transgenic for human or nonhuman primate prion protein (PrP) and determined their susceptibility to known pathogenic prion diseases, namely varient Creutzfeldt-Jakob disease (vCJD) and classical bovine spongiform encephalopathy (BSE), and that with unknown pathogenic potential, namely chronic wasting disease (CWD). Adult Drosophila transgenic for M129 or V129 human PrP or nonhuman primate PrP developed a neurotoxic phenotype and showed an accelerated loss of survival after exposure to vCJD, classical BSE, or CWD prions at the larval stage. vCJD prion strain identity was retained after passage in both M129 and V129 human PrP Drosophila. All of the primate PrP fly lines accumulated prion seeding activity and concomitantly developed a neurotoxic phenotype, generally including accelerated loss of survival, after exposure to CWD prions derived from different cervid species, including North American white-tailed deer and muntjac, and European reindeer and moose. These novel studies show that primate PrP transgenic Drosophila lack known prion transmission barriers since, in mammalian hosts, V129 human PrP is associated with severe resistance to classical BSE prions, while both human and cynomolgus macaque PrP are associated with resistance to CWD prions. Significantly, our data suggest that interspecies differences in the amino acid sequence of PrP may not be a principal determinant of the prion transmission barrier.


Asunto(s)
Animales Modificados Genéticamente , Animales , Humanos , Síndrome de Creutzfeldt-Jakob/transmisión , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Priones/metabolismo , Priones/genética , Bovinos , Drosophila/genética , Drosophila/metabolismo , Modelos Animales de Enfermedad , Enfermedad Debilitante Crónica/transmisión , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/genética , Encefalopatía Espongiforme Bovina/transmisión , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/genética , Encefalopatía Espongiforme Bovina/patología
8.
EMBO J ; 40(18): e107336, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34309071

RESUMEN

During tumor growth-when nutrient and anabolic demands are high-autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras-driven tumors additionally invoke non-autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well-characterized malignant tumor model in Drosophila melanogaster. Micro-computed X-ray tomography and metabolic profiling reveal that RasV12 ; scrib-/- tumors grow 10-fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, -motility, -feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.


Asunto(s)
Autofagia , Metabolismo Energético , Neoplasias/etiología , Neoplasias/metabolismo , Nutrientes/metabolismo , Animales , Autofagia/genética , Caquexia/diagnóstico por imagen , Caquexia/etiología , Caquexia/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila melanogaster , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Neoplasias/complicaciones
9.
Am J Physiol Cell Physiol ; 327(3): C661-C670, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981609

RESUMEN

Cancer cachexia, or the unintentional loss of body weight in patients with cancer, is a multiorgan and multifactorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. Although cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the frontline for both impaired nutrient absorption and immune-activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past two decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Furthermore, the most used anticancer drugs (e.g. chemotherapy and immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.


Asunto(s)
Caquexia , Microbioma Gastrointestinal , Músculo Esquelético , Neoplasias , Caquexia/metabolismo , Caquexia/microbiología , Caquexia/etiología , Humanos , Microbioma Gastrointestinal/fisiología , Neoplasias/microbiología , Neoplasias/complicaciones , Neoplasias/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiología , Disbiosis/microbiología , Tejido Adiposo/metabolismo , Tejido Adiposo/microbiología , Tejido Adiposo/inmunología
10.
Am J Physiol Cell Physiol ; 327(3): C684-C697, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39010842

RESUMEN

Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. Although its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular lipid droplet (LD) content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis lung carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n = 20) were implanted with LLC cells (106) in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red O/lipid staining [tibialis anterior (TA)], and protein (gastrocnemius). LLC mice had a greater number (232%; P = 0.006) and size (130%; P = 0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; P = 0.0109) and "very high" oil-red O positive (178%; P = 0.0002) fibers compared with controls and this was inversely correlated with fiber size (R2 = 0.5294; P < 0.0001). Morphological analyses of LDs show increased elongation and complexity [aspect ratio: intermyofibrillar (IMF) = 9%, P = 0.046) with decreases in circularity [circularity: subsarcolemmal (SS) = 6%, P = 0.042] or roundness (roundness: whole = 10%, P = 0.033; IMF = 8%, P = 0.038) as well as decreased LD-mitochondria touch (-15%; P = 0.006), contact length (-38%; P = 0.036), and relative contact (86%; P = 0.004). Furthermore, dysregulation in lipid metabolism (adiponectin, CPT1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (P < 0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.NEW & NOTEWORTHY We sought to advance our understanding of skeletal muscle lipid metabolism and dynamics in cancer cachexia. Cachexia increased the number and size of intramyocellular lipid droplets (LDs). Furthermore, decreases in LD-mitochondrial touch, contact length, and relative contact along with increased LD shape complexity with decreases in circularity and roundness. Dysregulation in lipid metabolism and LD-associated proteins was also documented. Collectively, we show that myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in cancer cachexia.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Gotas Lipídicas , Ratones Endogámicos C57BL , Músculo Esquelético , Animales , Caquexia/metabolismo , Caquexia/patología , Caquexia/etiología , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/complicaciones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Ratones , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Mitocondrias Musculares/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura
11.
Physiol Genomics ; 56(7): 483-491, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738317

RESUMEN

Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.NEW & NOTEWORTHY We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.


Asunto(s)
COVID-19 , Deshidratación , Metaboloma , Humanos , Femenino , Masculino , Persona de Mediana Edad , Deshidratación/metabolismo , COVID-19/metabolismo , COVID-19/complicaciones , Anciano , Metabolómica/métodos , Respiración Artificial , Lesión Renal Aguda/metabolismo , Adulto , SARS-CoV-2 , Estudios de Cohortes , Aminoácidos/metabolismo , Aminoácidos/sangre , Urea/metabolismo , Urea/sangre , Concentración Osmolar
12.
J Physiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031694

RESUMEN

Skeletal muscle wasting is the hallmark pathophysiological adaptation to unloading or disuse that demonstrates the dependency on frequent mechanical stimulation (e.g. muscle activation and subsequent loading) for homeostasis of normally load-bearing muscles. In the absence of mitigation strategies, no mammalian organism is resistant to muscle atrophy driven by unloading. Given the profound impact of unloading-induced muscle wasting on physical capacity, metabolic health and immune function; mitigation strategies during unloading and/or augmentation approaches during recovery have broad healthcare implications in settings of bed-bound hospitalization, cast immobilization and spaceflight. This topical review aims to: (1) provide a succinct, state-of-the-field summary of seminal and recent findings regarding the mechanisms of unloading-induced skeletal muscle wasting; (2) discuss unsuccessful vs. promising mitigation and recovery augmentation strategies; and (3) identify knowledge gaps ripe for future research. We focus on the rapid muscle atrophy driven by relatively short-term mechanical unloading/disuse, which is in many ways mechanistically distinct from both hypermetabolic muscle wasting and denervation-induced muscle atrophy. By restricting this discussion to mechanical unloading during which all components of the nervous system remain intact (e.g. without denervation models), mechanical loading requiring motor and sensory neural circuits in muscle remain viable targets for both mitigation and recovery augmentation. We emphasize findings in humans with comparative discussions of studies in rodents which enable elaboration of key mechanisms. We also discuss what is currently known about the effects of age and sex as biological factors, and both are highlighted as knowledge gaps and novel future directions due to limited research.

13.
Clin Infect Dis ; 79(Supplement_2): S63-S75, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301670

RESUMEN

The era of modern antiretroviral therapy (ART) has markedly improved health and survival among persons with human immunodeficiency virus (HIV) (PWH). In the pre-ART era, wasting was associated with HIV disease progression to acquired immunodeficiency syndrome and death. Effective ART has reduced the prevalence and incidence of this pre-ART form of HIV-associated wasting. However, a subgroup of ART-treated virally suppressed PWH continue to lose weight, often accompanied by aging-related comorbidities and/or functional deficits. For this subgroup of patients, the older definition of HIV-associated wasting (HIVAW) cannot and should not be applied. An expert panel comprising the authors of this white paper convened to review the existing definition of HIVAW and to create an updated definition that they termed HIV-associated weight loss, based on clinically defined parameters among contemporary PWH receiving ART. Here, clinical features and laboratory biomarkers associated with HIV-associated weight loss are reviewed and approaches to screening and treatment are considered. Available management approaches, including the use of current US Food and Drug Administration-approved medications for HIVAW and other available therapies are discussed. The expert panel also identified knowledge gaps and provided recommendations for clinicians, payers, and researchers.


Asunto(s)
Infecciones por VIH , Pérdida de Peso , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Fármacos Anti-VIH/uso terapéutico , Síndrome de Emaciación por VIH/tratamiento farmacológico , Consenso
14.
Emerg Infect Dis ; 30(8): 1651-1659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043428

RESUMEN

White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.


Asunto(s)
Ciervos , Scrapie , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/transmisión , Scrapie/transmisión , Ratones , Ovinos , Susceptibilidad a Enfermedades
15.
Emerg Infect Dis ; 30(6): 1193-1202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781931

RESUMEN

Chronic wasting disease (CWD) is a cervid prion disease with unknown zoonotic potential that might pose a risk to humans who are exposed. To assess the potential of CWD to infect human neural tissue, we used human cerebral organoids with 2 different prion genotypes, 1 of which has previously been associated with susceptibility to zoonotic prion disease. We exposed organoids from both genotypes to high concentrations of CWD inocula from 3 different sources for 7 days, then screened for infection periodically for up to 180 days. No de novo CWD propagation or deposition of protease-resistant forms of human prions was evident in CWD-exposed organoids. Some persistence of the original inoculum was detected, which was equivalent in prion gene knockout organoids and thus not attributable to human prion propagation. Overall, the unsuccessful propagation of CWD in cerebral organoids supports a strong species barrier to transmission of CWD prions to humans.


Asunto(s)
Organoides , Priones , Enfermedad Debilitante Crónica , Enfermedad Debilitante Crónica/transmisión , Humanos , Priones/metabolismo , Animales , Encéfalo/patología , Genotipo
16.
Emerg Infect Dis ; 30(10): 2118-2127, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39320164

RESUMEN

Chronic wasting disease (CWD) affects cervids in North America, Asia, and Scandinavia. CWD is unique in its efficient spread, partially because of contact with infectious prions shed in secreta. To assess temporal profiles of CWD prion shedding, we collected saliva, urine, and feces from white-tailed deer for 66 months after exposure to low oral doses of CWD-positive brain tissue or saliva. We analyzed prion seeding activity by using modified amyloid amplification assays incorporating iron oxide bead extraction, which improved CWD detection and reduced false positives. CWD prions were detected in feces, urine, and saliva as early as 6 months postinfection. More frequent and consistent shedding was observed in deer homozygous for glycine at prion protein gene codon 96 than in deer expressing alternate genotypes. Our findings demonstrate that improved amplification methods can be used to identify early antemortem CWD prion shedding, which might aid in disease surveillance of cervids.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/epidemiología , Animales , Priones/metabolismo , Priones/genética , Estudios Longitudinales , Estados Unidos/epidemiología , Heces/química , Saliva/química
17.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598070

RESUMEN

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Asunto(s)
Caquexia , Proteína Forkhead Box O3 , Enfermedades Musculares , Neoplasias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Síndrome Debilitante , Caquexia/etiología , Caquexia/metabolismo , Caquexia/terapia , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/terapia , Neoplasias/complicaciones , Redes y Vías Metabólicas , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Síndrome Debilitante/etiología , Síndrome Debilitante/metabolismo , Síndrome Debilitante/terapia , Animales , Modelos Animales de Enfermedad , Ratones , Línea Celular , Masculino , Ratones Endogámicos BALB C , Perfilación de la Expresión Génica
18.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265285

RESUMEN

Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica , Femenino , Masculino , Animales , Estudios Epidemiológicos , Encéfalo , Análisis por Conglomerados
19.
Biochem Biophys Res Commun ; 733: 150650, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39255618

RESUMEN

The widely used chemotherapeutic drug doxorubicin (DOX) has been associated with adverse effects on the skeletal muscle, which can persist for years after the end of the treatment. These adverse effects may be exacerbated in older patients, whose skeletal muscle might already be impaired by aging. Nonetheless, the mediators responsible for DOX-induced myotoxicity are still largely unidentified, particularly the ones involved in the long-term effects that negatively affect the quality of life of the patients. Therefore, this study aimed to investigate the long-term effects of the chronic administration of DOX on the soleus muscle of aged mice. For that and to mimic the clinical regimen, a dose of 1.5 mg kg-1 of DOX was administered two times per week for three consecutive weeks in a cumulative dose of 9 mg kg-1 to 19-month-old male mice, which were sacrificed two months after the last administration. Body wasting and the atrophy of the soleus muscle, as measured by a decrease in the cross-sectional area of the soleus muscle fibers, were identified as long-term effects of DOX administration. The atrophy observed was correlated with increased reactive oxygen species production and caspase-3 activity. An impaired skeletal muscle regeneration was also suggested due to the correlation between satellite cells activation and the soleus muscle fibers atrophy. Systemic inflammation, skeletal muscle energy metabolism and neuromuscular junction-related markers do not appear to be involved in the long-term DOX-induced skeletal muscle atrophy. The data provided by this study shed light on the mediators involved in the overlooked long-term DOX-induced myotoxicity, paving the way to the improvement of the quality of life and survival rates of older cancer patients.


Asunto(s)
Envejecimiento , Doxorrubicina , Músculo Esquelético , Animales , Doxorrubicina/toxicidad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Antibióticos Antineoplásicos/toxicidad , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Caspasa 3/metabolismo
20.
Yeast ; 41(1-2): 5-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997284

RESUMEN

Auxotrophic strains starving for their cognate nutrient, termed auxotrophic starvation, are characterized by a shorter lifespan, higher glucose wasting phenotype, and inability to accomplish cell cycle arrest when compared to a "natural starvation," where a cell is starving for natural environmental growth-limiting nutrients such as phosphate. Since evidence of this physiological response is limited to only a subset of auxotrophs, we evaluated a panel of auxotrophic mutants to determine whether these responses are characteristic of a broader range of amino acid auxotrophs. Based on the starvation survival kinetics, the panel of strains was grouped into three categories-short-lived strains, strains with survival similar to a prototrophic wild type strain, and long-lived strains. Among the short-lived strains, we observed that the tyrosine, asparagine, threonine, and aspartic acid auxotrophs rapidly decline in viability, with all strains unable to arrest cell cycle progression. The three basic amino acid auxotrophs had a survival similar to a prototrophic strain starving in minimal media. The leucine, tryptophan, methionine, and cysteine auxotrophs displayed the longest lifespan. We also demonstrate how the phenomenon of glucose wasting is limited to only a subset of the tested auxotrophs, namely the asparagine, leucine, and lysine auxotrophs. Furthermore, we observed pleiotropic phenotypes associated with a subgroup of auxotrophs, highlighting the importance of considering unintended phenotypic effects when using auxotrophic strains especially in chronological aging experiments.


Asunto(s)
Aminoácidos , Asparagina , Aminoácidos/metabolismo , Leucina , Metionina/metabolismo , Glucosa/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA