Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113580

RESUMEN

BACKGROUND: Multidrug-resistant bacteria in humans have prompted the search for alternative solutions derived from herbal medicines that can substitute antibiotics in livestock production. Thus, the goal of this study was to evaluate the phytogenic properties of Marrubium vulgare infusion (MVI) on weaned pigs. Thirty animals were randomly divided into five groups of six animals, each receiving a physiological solution, clenbuterol and the infusion extract at doses of 0.01 (MVI 1%), 0.1 (MVI 10%) and 0.2 (MVI 20%) mg kg-1 for 28 days. Biochemical parameters and the liquid chromatographic-electrospray ionization-mass spectrometric (LC-ESI-MS) chemical profiles of the infusion extract and animal serum were studied. RESULTS: The doses MVI 1 and 10% led to weight gain higher than the controls. No significant changes were noted in the biochemical parameters including erythrocytes, hemoglobin, hematocrit, mean corpuscular volume and others. Evaluation of enzymatic levels in blood revealed no significant changes. LC-ESI-MS data of MVI showed the presence of 34 secondary metabolites, and successive chromatographic purification of MVI yielded marrubiin and apigenin as major components. LC-ESI-MS data of animal serum showed the presence of a diterpene, a flavonoid and diverse cholic acid derivatives. CONCLUSION: Results indicated the doses MVI 1 and 10% promote weight gain with no significant alterations in blood biochemicals, and liver and kidney function. © 2024 Society of Chemical Industry.

2.
BMC Vet Res ; 18(1): 303, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933350

RESUMEN

BACKGROUND: The purpose of this research is to determine the effects of sodium gluconate (SG) on the growth performance and intestinal function in weaned pigs challenged with a recombinant Escherichia coli strain expressing heat-stable type I toxin (STa). RESULTS: Pigs (n = 24, 21 days of age) were randomly allocated to three treatments: Control group (pigs were fed basal diet), STa group (pigs were fed basal diet and challenged with a recombinant E. coli strain expressing STa), and SG group (pigs were fed basal diet supplemented with 2500 mg/kg sodium gluconate and challenged with a recombinant E. coli strain expressing STa). The trial period lasted for 15 days. On days 12 and 13, pigs in the STa and SG groups were orally administered with the recombinant Escherichia coli strain, while those in the control group were orally administered with normal saline at the same volume. On day 15, blood, intestinal tissues and colonic contents were collected for further analysis. Results showed that dietary SG supplementation had a tendency to increase average daily gain, and reduced (P < 0.05) feed to gain ratio, plasma glucose concentration, and mean corpuscular hemoglobin concentration as compared with control group on days 0-10 of trial. Additionally, dietary SG supplementation attenuated(P < 0.05) the morphological abnormalities of small intestinal and the increase of the number of eosinophils in blood of pigs challenged with the recombinant Escherichia coli strain on day 15 of trial. Compared with control group, diarrhea rate and the number of eosinophils in blood and the concentrations of malondialdehyde in the jejunum were increased (P < 0.05). The height, width and surface area of the villi of the duodenum, the width and surface area of villi of jejunum and the height and width of villi of ileum were decreased (P < 0.05) in pigs challenged with the recombinant Escherichia coli strain in the STa group compared with those in control group on day 15 of trial. However, these adverse effects were ameliorated (P < 0.05) by SG supplementation in the SG group on day 15 of trial. Furthermore, dietary SG supplementation could reduce (P < 0.05) the total bacterial abundance in the colon, but SG did not restore the recombinant Escherichia coli-induced microbiota imbalance in colon. CONCLUSIONS: In conclusion, dietary supplementation with SG could improve piglet growth performance and alleviate the recombinant Escherichia coli-induced intestinal injury, suggesting that SG may be a promising feed additive for swine.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Gluconatos , Distribución Aleatoria , Porcinos , Destete
3.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1046-1059, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34632644

RESUMEN

BACKGROUND: Fermented soya bean meal (FSBM) is believed to have improved nutritional qualities compared with soya bean meal (SBM) and is also cheaper than soya protein concentration (SPC) and fish meal (FM). Therefore, the present study was conducted to compare the effects of FSBM replacing SBM, SPC and FM in diets on growth performance, serum biochemistry profile, short-chain fatty acid concentrations in digesta, intestinal mucosal enzyme activities, intestinal proinflammatory cytokine concentrations and morphology in weaned piglets. One hundred and twenty 28-day-old piglets (Duroc × Landrace × Yorkshire, body weight: 6.73 ± 1.14 kg) were randomly allocated to four treatment diets (six replicate pens with five piglets per pen) containing SBM, SPC, FM or FSBM as the protein source, respectively. RESULTS: Dietary FSBM supplementation improved average daily gain (p < 0.05), gain to feed ratio (p < 0.05), and digestibility of dry matter, gross energy, crude protein and organic matter (p < 0.05) in pigs compared with those fed SBM during 0-14 days and reduced diarrhoea rate (p < 0.05) compared with those fed SBM and FM during 0-14 days. Moreover, pigs fed FBSM had greater IgA and IgM contents and antioxidase activities than those provided SBM and SPC on day 14. In addition, the butyrate concentration in the cecum of pigs fed FSBM was greater than those fed the other diets (p < 0.05), and the trypsin activity in duodenum and jejunum of pigs provided FSBM was greater than those fed SBM (p < 0.05). Moreover, higher villus height (p < 0.05) and villus height to crypt depth ratio (p < 0.05) and lower crypt depth (p < 0.05) in the duodenum of pigs fed FSBM were observed, and pigs fed FSBM had a lower (p < 0.05) TNF-α concentration in jejunum compared with those fed SBM. CONCLUSIONS: In conclusion, dietary FSBM supplementation to replace SBM, SPC and FM could improve piglets' growth performance, intestinal health and immune function.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Glycine max/química , Porcinos , Destete
4.
Vet Pathol ; 57(5): 642-652, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32880235

RESUMEN

In the small intestine, localized innate mucosal immunity is critical for intestinal homeostasis. Porcine epidemic diarrhea virus (PEDV) infection induces villus injury and impairs digestive function. Moreover, the infection might comprise localized innate mucosal immunity. This study investigated specific enterocyte subtypes and innate immune components of weaned pigs during PEDV infection. Four-week-old pigs were orally inoculated with PEDV IN19338 strain (n = 40) or sham-inoculated (n = 24). At day post inoculation (DPI) 2, 4, and 6, lysozyme expression in Paneth cells, cellular density of villous and Peyer's patch microfold (M) cells, and the expression of polymeric immunoglobulin receptor (pIgR) were assessed in the jejunum and ileum by immunohistochemistry, and interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were measured in the jejunum by ELISA. PEDV infection led to a decrease in the ratios of villus height to crypt depth (VH-CD) in jejunum at DPI 2, 4, and 6 and in ileum at DPI 4. The number of villous M cells was reduced in jejunum at DPI 4 and 6 and in ileum at DPI 6, while the number of Peyer's patch M cells in ileum increased at DPI 2 and then decreased at DPI 6. PEDV-infected pigs also had reduced lysozyme expression in ileal Paneth cells at DPI 2 and increased ileal pIgR expression at DPI 4. There were no significant changes in IL-1ß and TNF-α expression in PEDV-infected pigs compared to controls. In conclusion, PEDV infection affected innate mucosal immunity of weaned pigs through alterations in Paneth cells, villous and Peyer's patch M cells, and pIgR expression.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Inmunidad Innata , Mucosa Intestinal/inmunología , Virus de la Diarrea Epidémica Porcina , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Citocinas/análisis , Íleon/inmunología , Íleon/patología , Íleon/virología , Mucosa Intestinal/química , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Yeyuno/inmunología , Yeyuno/patología , Yeyuno/virología , Receptores de Inmunoglobulina Polimérica/metabolismo , Porcinos , Destete
5.
J Anim Physiol Anim Nutr (Berl) ; 101(1): 88-95, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27271838

RESUMEN

The present study was performed to investigate the effects of dietary supplementation of bacteriophages (phages) against enterotoxigenic Escherichia coli (ETEC) K88 as a therapy against the ETEC infection in post-weaning pigs. Two groups of post-weaning pigs aged 35 days, eight animals per group, were challenged with 3.0 × 1010 colony forming units of ETEC K88, a third group given the vehicle. The unchallenged group and one challenged group were fed a basal nursery diet for 14 days while the remaining challenged group was fed the basal diet supplemented with 1.0 × 107 plaque forming units of the phage per kg. Average daily gain (ADG), goblet cell density and villous height:crypt depth (VH:CD) ratio in the intestine were less in the challenged group than in the unchallenged group within the animals fed the basal diet (p < 0.05); the reverse was true for rectal temperature, faecal consistency score (FCS), E. coli adhesion score (EAS) in the intestine, serum interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) concentrations and digesta pH in the stomach, caecum and colon. The ETEC infection symptom within the challenged animals was alleviated by the dietary phage supplementation (p < 0.05) in ADG, FCS, EAS in the jejunum, serum TNF-α concentration, digesta pH in the colon, goblet cell density in the ileum and colon and VH:CD ratio in the ileum. Moreover, the infection symptom tended to be alleviated (p < 0.10) by the phage supplementation in rectal temperature, EAS in the ileum and caecum, and VH:CD ratio in the duodenum and jejunum. However, EAS in the colon, digesta pH in the stomach and caecum, and goblet cell density in the jejunum did not change due to the dietary phage. Overall, results indicate that the phage therapy is effective for alleviation of acute ETEC K88 infection in post-weaning pigs.


Asunto(s)
Bacteriófagos/fisiología , Escherichia coli Enterotoxigénica/virología , Infecciones por Escherichia coli/veterinaria , Enfermedades Gastrointestinales/veterinaria , Enfermedades de los Porcinos/microbiología , Animales , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/prevención & control , Masculino , Porcinos , Enfermedades de los Porcinos/terapia
6.
Asian-Australas J Anim Sci ; 28(12): 1742-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26580442

RESUMEN

As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

7.
Asian-Australas J Anim Sci ; 27(5): 733-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25050009

RESUMEN

The glucagon-like peptide 2 (GLP-2) that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ) proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets' intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK) signaling pathway in piglets' intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco's modified Eagle's medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1), occludin and claudin-1 were increased (p<0.05). U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05). In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs' jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.

8.
Transl Anim Sci ; 8: txad149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390272

RESUMEN

In nursery diets, ingredients with high protein content and highly digestible nutrients, such as corn-fermented protein product with added yeast mass (GDDY), can be included as an alternative to common protein sources. This study investigated the dietary inclusion of GDDY as an alternative protein source on growth performance and intestinal health of weaned pigs. A total of 594 weaned pigs (5.7 ±â€…0.9 kg; 18.5 days of age) were allotted to 36 pens in a randomized incomplete block design. Pens were assigned to one of 4 dietary treatments: CON: a common nursery feeding program; SBM75: CON diet replacing 75% of soybean meal (SBM) with GDDY; FM/ESBM: CON diet without fish meal (FM) and enzyme-treated SBM (ESBM) + GDDY; GDDY50: CON diet replacing 50% of SBM, FM, and ESBM with GDDY. Experimental diets were formulated to meet nutrient requirements of nursery pigs and provided in meal form through four phases during the nursery period. Pig growth performance was assessed on days 7, 14, 21, 28, 42, and 53. Pen fecal score was assessed daily from days 0 to 14, and 3 times per week from days 15 to 35. Intestinal health was assessed based on plasma immunoglobulin A (IgA) concentration and the differential sugar absorption test. The total tract digestibility of dry matter (DM), crude protein (CP), gross energy (GE), and phosphorus was also evaluated. From days 0 to 7 and days 7 to 14, dietary treatment had no effect (P > 0.05) on BW, ADG, and ADFI. For the rest of the experimental period, ADG and ADFI were greater (P < 0.05) in pigs fed CON in comparison with those fed SBM75 and GDDY50 and did not differ from pigs fed FM/ESBM. Pigs fed GDDY50 tended (P = 0.082) to have greater serum IgA concentration on day 20 when compared with SBM75 and FM/ESBM pigs. There were no differences among dietary treatments for DM, CP, and GE digestibility. Phosphorus digestibility was higher in FM/ESBM (P < 0.05) compared with SBM75 and GDDY50. These results supported the hypothesis that GDDY can be incorporated in nursery pig diets during the first couple weeks after weaning without affecting growth performance. However, in the late nursery period, inclusion levels starting at 14% can compromise performance.

9.
Microorganisms ; 12(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39203378

RESUMEN

Probiotics provide health benefits and are used as feed supplements as an alternative prophylactic strategy to antibiotics. However, the effects of Bacillus-based probiotics containing more than two strains when supplemented to pigs are rarely elucidated. SOLVENS (SLV) is a triple-strain Bacillus-based probiotic. In this study, we investigate the effects of SLV on performance, immunity, intestinal morphology, and microbial community in piglets. A total of 480 weaned pigs [initial body weight (BW) of 8.13 ± 0.08 kg and 28 days of age] were assigned to three treatments in a randomized complete block design: P0: basal diet (CON); P200: CON + 200 mg SLV per kg feed (6.5 × 108 CFU/kg feed); and P400: CON + 400 mg SLV per kg feed (1.3 × 109 CFU/kg feed). Each treatment had 20 replicated pens with eight pigs (four male/four female) per pen. During the 31 d feeding period (Phase 1 = wean to d 14, Phase 2 = d 15 to 31 after weaning), all pigs were housed in a temperature-controlled nursery room (23 to 25 °C). Feed and water were available ad libitum. The results showed that the pigs in the P400 group increased (p < 0.05) average daily gain (ADG) in phase 2 and tended (p = 0.10) to increase ADG overall. The pigs in the P200 and P400 groups tended (p = 0.10) to show improved feed conversion ratios overall in comparison with control pigs. The pigs in the P200 and P400 groups increased (p < 0.05) serum immunoglobulin A, immunoglobulin G, and haptoglobin on d 14, and serum C-reactive protein on d 31. The pigs in the P200 group showed an increased (p < 0.01) villus height at the jejunum, decreased (p < 0.05) crypt depth at the ileum compared with other treatments, and tended (p = 0.09) to have an increased villus-crypt ratio at the jejunum compared with control pigs. The pigs in the P200 and P400 groups showed increased (p < 0.05) goblet cells in the small intestine. Moreover, the pigs in the P400 group showed down-regulated (p < 0.05) interleukin-4 and tumor necrosis factor-α gene expressions, whereas the pigs in the P400 group showed up-regulated occludin gene expression in the ileum. These findings suggest that SLV alleviates immunological reactions, improves intestinal microbiota balance, and reduces weaning stress in piglets. Therefore, SOLVENS has the potential to improve health and performance for piglets.

10.
Asian-Australas J Anim Sci ; 26(11): 1614-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25049749

RESUMEN

The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs.

11.
Asian-Australas J Anim Sci ; 26(10): 1484-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049731

RESUMEN

The study was conducted to determine the effects of chitosan on the concentrations of GH and IGF-I in serum and small intestinal morphological structure of piglets, in order to evaluate the regulating action of chitosan on weaned pig growth through endocrine and intestinal morphological approaches. A total of 180 weaned pigs (35 d of age; 11.56±1.61 kg of body weight) were selected and assigned randomly to 5 dietary treatments, including 1 basal diet (control) and 4 diets with chitosan supplementation (100, 500, 1,000 and 2,000 mg/kg, respectively). Each treatment contained six replicate pens with six pigs per pen. The experiment lasted for 28 d. The results showed that the average body weight gain (BWG) of pigs was improved quadratically by dietary chitosan during the former 14 d and the later 14 d after weaned (p<0.05). Furthermore, dietary supplementation of chitosan tended to quadratically increase the concentration of serum GH on d 14 (p = 0.082) and 28 (p = 0.087). Diets supplemented with increasing levels of chitosan increased quadratically the villus height of jejunum and ileum on d 14 (p = 0.089, p<0.01) and 28 (p = 0.074, p<0.01), meanwhile, chitosan increased quadratically the ratio of villus height to crypt depth in duodenum, jejunum and ileum on d 14 (p<0.05, p = 0.055, p<0.01) and 28 (p<0.01, p<0.01, p<0.01), however, it decreased quadratically crypt depth in ileum on d 14 (p<0.05) and that in duodenum, jejunum and ileum on d 28 (p<0.01, p<0.05, p<0.05). In conclusion, these results indicated that chitosan could quadratically improve growth in weaned pigs, and the underlying mechanism may due to the increase of the serum GH concentration and improvement of the small intestines morphological structure.

12.
Anim Nutr ; 15: 409-419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046955

RESUMEN

Hindered growth often occurs because of psychological and environmental stress during the weaning period of piglets. This study aimed to compare the effects of growth performance, diarrhea indices, digestibility of nutrients, antioxidant capacity, neurotransmitters levels and metabolism of weaned pigs fed diets supplemented with pyrroloquinoline quinone (PQQ) and zinc oxide (ZnO). Pigs weaned at d 28 (n = 108) were fed with three different diets including: the basal diet (CTRL group), the basal diet supplemented with 3.0 mg/kg PQQ (PQQ group) and the basal diet containing 1,600 mg/kg ZnO (ZNO group). During the first 14 d, weaned pigs fed the diet supplemented with PQQ and ZnO decreased feed to gain ratio and diarrhea rate (P < 0.01). Compared with the CTRL group, average daily gain was increased in weaned pigs in the PQQ group from d 15 to 28 (P = 0.03). Compared with the CTRL group, pigs fed PQQ and ZnO supplemented diets showed improved apparent total tract digestibility (ATTD) of nutrients (P ≤ 0.05). During the overall experimental period, the concentration of malondialdehyde was decreased in plasma of pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). At d 28, the concentration of vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) was lower in plasma of weaned pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). There was no difference between the PQQ and ZNO group in growth performance, ATTD of nutrition, antioxidant capacity and neurotransmitters levels. PQQ increased 3-methoxy-4-hydroxymandelate (P < 0.05) compared with the CTRL group. According to metabolomic analysis, erucamide, formononetin and 3-methyl-L-histidine were up-regulated in the PQQ group (P < 0.05). Compared with the CTRL group, aloesin and dibutyl adipate were down-regulated in the PQQ group (P < 0.05). In conclusion, similar to ZnO, PQQ improves growth performance, digestibility of nutrients, antioxidant capacity, neuromodulation and metabolism of weaned pigs. Thus, like ZnO, PQQ can be effectively applied in weaned pigs.

13.
Animals (Basel) ; 13(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37443994

RESUMEN

Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.

14.
Front Vet Sci ; 10: 1107149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777676

RESUMEN

Introduction: The objective of this study was to investigate the effects of dietary supplementation of tributyrin and anise mixture (TA) on growth performance, apparent nutrient digestibility, fecal noxious gas emission, fecal score, jejunal villus height, hematology parameters, and fecal microbiota of weaned pigs. Methods: A total of 150 21-day-old crossbred weaned pigs [(Landrace × Yorkshire) × Duroc] were used in a randomized complete block design experiment. All pigs were randomly assigned to 3 groups based on the initial body weight (6.19 ± 0.29 kg). Each group had 10 replicate pens with 5 pigs (three barrows and two gilts) per pen. The experimental period was 42 days and consisted of 3 phases (phase 1, days 1-7; phase 2, days 8-21; phase 3, days 22-42). Dietary treatments were based on a corn-soybean meal-basal diet and supplemented with 0.000, 0.075, or 0.150% TA. Results and discussion: We found that dietary supplementation of graded levels of TA linearly improved body weight, body weight gain, average daily feed intake, and feed efficiency (P < 0.05). TA supplementation also had positive effects on apparent dry matter, crude protein, and energy digestibility (P < 0.05) and jejunal villus height (P < 0.05). The emission of ammonia from feces decreased linearly with the dose of TA increased (P < 0.05). Moreover, TA supplementation was capable to regulate the fecal microbiota diversity, manifesting in a linearly increased Chao1 index and observed species and a linearly decreased Pielou's index (P < 0.05). The abundance of Lactobacillus reuteri, Lactobacillus amylovorus, Clostridium butyricum were increased, while the abundance of Prevotella copri was decreased, by treatment (P < 0.05). Therefore, we speculated that TA supplementation would improve growth performance and reduce fecal ammonia emission through improving nutrient digestibility, which was attributed to the increase of jejunal villus height and the regulation of fecal microbiota.

15.
Front Vet Sci ; 10: 1111257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968478

RESUMEN

The aim of this study is to evaluate the effects of dietary iron sources on growth performance, iron status and activities of Fe-containing enzymes and gene expression related to iron homeostasis in tissues of weaned pigs. A total of 480 piglets at d 28 (Duroc X Landrace) were allotted to four groups as a factorial arrangement of treatments with 30 pigs/pen (male: female = 1:1) and 4 replicate pens/treatment. The treatments for iron in the diets were: control basal diet (Con); Con + 150 mg Fe/kg as inorganic Fe (iFe); Con + 75 mg Fe/kg as inorganic Fe + 75 mg Fe/kg as organic Fe-peptide complex (iFe+oFe) and Con + 150 mg of Fe/kg as organic Fe-peptide complex (oFe). The feeding trial lasted for 36 days. There were no significant differences in final body weight, ADG, ADFI, and G/F as well as blood hemoglobin and MCHC contents between piglets fed the control and iron-supplemented groups (P > 0.05). The iron supplemented groups exhibited increased iron content in the liver, kidney and spleen as well as the CAT and SDH activities in liver compared to the control group (P < 0.05), while piglets in oFe group experienced greater Fe accumulation and activities of CAT and SDH in the liver than piglets in the iFe group. Compared with the control group, dietary supplementation of iron increased the NCOA4 mRNA expression and decreased the TfR1 mRNA expression in liver of piglets. The TfR1, NCOA4 and Ferritin mRNA expressions of bone marrow in both iFe and iFe+oFe groups were greater than both in the Con and oFe groups. These results suggest that dietary supplementation of iron does not influence the growth performance and hematological parameters in weaned pigs fed a corn-soybean meal basal diet (75.8 mg/kg) from d 28 to d 70, but increased tissue iron status and activities of Fe-containing enzymes at d 70. The addition of organic Fe-peptide complexes presents greater beneficial effects on enhancing tissue Fe accumulation and Fe-containing enzyme activities, which may be involved in different gene expression patterns related to iron intake and transport in tissues of weaned pigs.

16.
Front Vet Sci ; 10: 1148941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124567

RESUMEN

Transportation of livestock is unavoidable in animal production. A total of 72 piglets were randomly divided into the CON group and the TSG group, and the piglets in CON group were transported for two hours. The purpose of this study was to determine the effects of short-distance road transportation lasting 2 h on the jejunum of weaned piglets. Our results showed that compared with the control group, there was no impact on the growth performance of piglets in the transport group (P > 0.05). The concentrations of cortisol, heat shock protein (HSP)70, HSP90, C-reactive protein, interleukin (IL)-6, IL-8, IL-12, and interferon-γ and the activity of reactive oxygen species were increased in the jejunum of piglets in the transport group (P < 0.05 compared with the control group). The concentrations of glutathione peroxidase, claudin-1, occludin, and zonula occludens-1 showed no between-group differences (P > 0.05). Regarding intestinal morphology, the transport group showed infiltration of a small amount of lymphocytes into the jejunum mucosa epithelium that was accompanied by edema of the lamina propria, whereas the control group showed no obvious abnormalities. At the genus level, in the transport group, the 16S rRNA sequencing revealed a downward trend in the relative abundance of Lactobacillus and an upward trend in the relative abundance of Muribaculaceae_unclassified. There was also increased mRNA expression of genes associated with inflammation in the transport group, but the genes and pathways related to apoptosis were not activated. In summary, weaned piglets undergoing 2 h of short-distance road transportation showed stress and inflammatory reactions of the jejunum but did not exhibit oxidative damage or activation of the apoptosis pathway of the jejunum. Furthermore, the growth performance of the piglets was not affected by the trip.

17.
Front Microbiol ; 14: 1181519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180229

RESUMEN

This experiment was conducted to evaluate effects of zine oxide (ZnO) and condensed tannins (CT), independently or in combination, on the growth performance and intestinal health of weaned piglets in enterotoxigenic Escherichia coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets into 4 groups. Dietary treatments included the following: basic diet group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05) and no significant on growth performance. The effect of CT on reducing diarrhea rate and diarrhea index was similar to the results of ZnO. Compared with the CON group, ZnO increased the ileum villus height and improved intestinal barrier function by increasing the content of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function genes were similar to that of ZnO. Moreover, the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by decreasing CFTR expression and promote water reabsorption by increasing AQP3 expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and genera Lactobacillus in colonic contents. These results indicated that ZnO and CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs in ETEC-challenged environment. In addition, the application of ZnO combined with CT did not show synergistic effects on piglet intestinal health and overall performance. This study provides a theoretical basis for the application of ZnO in weaning piglet production practices, we also explored effects of CT on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment.

18.
Animals (Basel) ; 13(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899679

RESUMEN

Laminaria spp. and their extracts have preventative potential as dietary supplements during weaning in pigs. The first objective of this study was to evaluate increasing concentrations of four whole seaweed biomass samples from two different Laminaria species harvested in two different months in a weaned pig faecal batch fermentation assay. Particularly, February and November whole seaweed biomass samples of L. hyperborea (LHWB-F and LHWB-N) and L. digitata (LDWB-F and LDWB-N) were used. In the next part of the study, the increasing concentrations of four extracts produced from L. hyperborea (LHE1-4) and L. digitata (LDE1-4) were evaluated in individual pure-culture growth assays using a panel of beneficial and pathogenic bacterial strains (second objective). The LHE1-4 and LDE1-4 were obtained using different combinations of temperature, incubation time and volume of solvent within a hydrothermal-assisted extraction methodology (E1-4). In the batch fermentation assay, the L. hyperborea biomass samples, LHWB-F and LHWB-N, lowered Bifidobacterium spp. counts compared to the L. digitata biomass samples, LDWB-F and LDWB-N (p < 0.05). LHWB-F and LDWB-N reduced Enterobacteriaceae counts (p < 0.05). LHWB-F and LDWB-F were selected as the most and least promising sources of antibacterial extracts from which to produce LHE1-4 and LDE1-4. In the pure-culture growth assays, E1- and E4-produced extracts were predominantly associated with antibacterial and bifidogenic activities, respectively. LHE1 reduced both Salmonella Typhimurium and Enterotoxigenic Escherichia coli with LDE1 having a similar effect on both of these pathogenic strains, albeit to a lesser extent (p < 0.05). Both LHE1 and LDE1 reduced B. thermophilum counts (p < 0.05). LDE4 exhibited strong bifidogenic activity (p < 0.05), whereas LHE4 increased Bifidobacterium thermophilum and Lactiplantibacillus plantarum counts (p < 0.05). In conclusion, antibacterial and bifidogenic extracts of Laminaria spp. were identified in vitro with the potential to alleviate gastrointestinal dysbiosis in newly weaned pigs.

19.
Pathogens ; 12(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986329

RESUMEN

Gut alkaline phosphatases (AP) dephosphorylate the lipid moiety of endotoxin and other pathogen-associated-molecular patterns members, thus maintaining gut eubiosis and preventing metabolic endotoxemia. Early weaned pigs experience gut dysbiosis, enteric diseases and growth retardation in association with decreased intestinal AP functionality. However, the role of glycosylation in modulation of the weaned porcine gut AP functionality is unclear. Herein three different research approaches were taken to investigate how deglycosylation affected weaned porcine gut AP activity kinetics. In the first approach, weaned porcine jejunal AP isoform (IAP) was fractionated by the fast protein-liquid chromatography and purified IAP fractions were kinetically characterized to be the higher-affinity and lower-capacity glycosylated mature IAP (p < 0.05) in comparison with the lower-affinity and higher-capacity non-glycosylated pre-mature IAP. The second approach enzyme activity kinetic analyses showed that N-deglycosylation of AP by the peptide N-glycosidase-F enzyme reduced (p < 0.05) the IAP maximal activity in the jejunum and ileum and decreased AP affinity (p < 0.05) in the large intestine. In the third approach, the porcine IAP isoform-X1 (IAPX1) gene was overexpressed in the prokaryotic ClearColiBL21 (DE3) cell and the recombinant porcine IAPX1 was associated with reduced (p < 0.05) enzyme affinity and maximal enzyme activity. Therefore, levels of glycosylation can modulate plasticity of weaned porcine gut AP functionality towards maintaining gut microbiome and the whole-body physiological status.

20.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36967519

RESUMEN

To reduce the use of antibiotics, research into nutritional strategies designed to improve the gut health of weaned pigs is underway. This study sought to examine the effects of reducing dietary crude protein (CP) and/or supplementing the feed with sodium butyrate protected by the sodium salts of medium-chain fatty acids on the growth performance and gut health of weaned piglets. Ninety-six weaned piglets (Landrace × large white, 21 days of age) were allotted to four experimental treatments for 14 d. The experimental design was factorial with 2 CP levels and 2 feed-additive doses (0 vs. 1 kg/t). Results showed that reducing CP from 22.2% to 18.8% diet had no effect on piglet growth performance parameters during the first post-weaning week (P > 0.05), but did compromise growth in the second week (P = 0.011), impacting overall growth performance results (P = 0.019). Nonetheless, dietary CP level reduction led reducing crypt depth (P = 0.03657). In addition, Lactobacillus counts that were increased in the ileum (P = 0.032) and reduced in the colon (P = 0.032). Furthermore, apparent ileal digestibility of organic matter (P = 0.026) and fecal consistency (P < 0.05) were improved throughout the experiment. Moreover, in piglets fed diets containing 22.2% CP, the use of the feed-additive tended to improve the gain-to-feed ratio (P = 0.091) compared to those fed supplemented diets containing 18.8% CP. In addition, feed supplementation increased ileal numbers of goblet cells (P = 0.036), as well as apparent ileal digestibility of dry matter (P = 0.057) and organic matter (P = 0.003). Supplementation also had beneficial effects on the microbiota of the colon, increasing Lactobacillus counts (P = 0.006) and diminishing Enterobacteriaceae counts (P = 0.003), as well as affecting microbial metabolite profiles in that acetic acid concentrations tended to be increased (P = 0.088) and valeric acid concentrations were reduced (P = 0.002). These findings support the use of both strategies can improve the gut health of weaned piglets and prompt further research into the possible benefits of combining these two nutritional strategies on gut health and growth performance.


Reducing dietary levels of crude protein (CP) and the use of feed-additives such as sodium butyrate protected by medium-chain fatty acid salts are currently under investigation as nutritional strategies with beneficial effects on the intestinal barrier, and consequently on the health of weaned piglets. The intestinal barrier is a dynamic complex ecosystem that includes morphological structure and microbial composition. Reducing CP intake from 22.2% to 18.8% in piglets was found here to compromise their growth 2 wk after weaning. However, considering the effect of reducing CP on gut health, crypt depth was reduced and the Lactobacillus population was expanded in the ileum and diminished in the colon. In addition, organic matter digestibility and fecal consistency were improved. Supplementation with sodium butyrate protected by the sodium salts of medium-chain fatty acids at 1 kg/t increased the number of mucin-secreting cells, thereby reinforcing the intestinal barrier, and improving ileal digestibility. In addition, it modified the microbiota in the colon. These findings on different parameters of intestinal barrier prompt further investigation into the effects of both strategies on gut health and growth performance of piglets.


Asunto(s)
Dieta , Sales (Química) , Animales , Porcinos , Ácido Butírico , Destete , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/metabolismo , Alimentación Animal/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA