Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521818

RESUMEN

With this paper we communicated the existence of a surface electrocardiography (ECG) recordings dataset, named WCTECGdb, that aside from the standard 12-lead signals includes the raw electrode biopotential for each of the nine exploring electrodes refereed directly to the right leg. This dataset, comprises of 540 ten second segments recorded from 92 patients at Campbelltown Hospital, NSW Australia, and is now available for download from the Physionet platform. The data included in the dataset confirm that the Wilson's Central Terminal (WCT) has a relatively large amplitude (up to 247% of lead II) with standard ECG characteristics such as a p-wave and a t-wave, and is highly variable during the cardiac cycle. As further examples of application for our data, we assess: (1) the presence of a conductive pathway between the legs and the heart concluding that in some cases is electrically significant and (2) the initial assumption about the limbs potential stating the dominance of the left arm concluding that this is not always the case and that might requires case to case assessment.


Asunto(s)
Electrocardiografía , Corazón/fisiología , Pierna , Australia , Conjuntos de Datos como Asunto , Electrodos , Humanos
2.
Ann Noninvasive Electrocardiol ; 23(5): e12549, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29736948

RESUMEN

BACKGROUND: "Smartphone 12-lead ECG" for the assessment of acute myocardial ischemia has recently been introduced. In the smartphone 12-lead ECG either the right or the left arm can be used as reference for the chest electrodes instead of the Wilson central terminal. These leads are labeled "CR leads" or "CL leads." We aimed to compare chest-lead ST-J amplitudes, using either CR or CL leads, to those present in the conventional 12-lead ECG, and to determine sensitivity and specificity for the diagnosis of STEMI for CR and CL leads. METHODS: Five hundred patients (74 patients with ST elevation myocardial infarction (STEMI), 66 patients with nonischemic ST deviation and 360 controls) were included. Smartphone 12-lead ECG chest-lead ST-J amplitudes were calculated for both CR and CL leads. RESULTS: ST-J amplitudes were 9.1 ± 29 µV larger for CR leads and 7.7 ± 42 µV larger for CL leads than for conventional chest leads (V leads). Sensitivity and specificity were 94% and 95% for CR leads and 81% and 97% for CL leads when fulfillment of STEMI criteria in V leads was used as reference. In ischemic patients who met STEMI criteria in V leads, but not in limb leads, STEMI criteria were met with CR or CL leads in 91%. CONCLUSION: By the use of CR or CL leads, smartphone 12-lead ECG results in slightly lower sensitivity in STEMI detection. Therefore, the adjustment of STEMI criteria may be needed before application in clinical practice.


Asunto(s)
Electrocardiografía/instrumentación , Electrocardiografía/métodos , Infarto del Miocardio con Elevación del ST/diagnóstico , Teléfono Inteligente , Brazo , Electrodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Sensors (Basel) ; 18(7)2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30036936

RESUMEN

Since its inception, electrocardiography has been based on the simplifying hypothesis that cardinal limb leads form an equilateral triangle of which, at the center/centroid, the electrical equivalent of the cardiac activity rotates during the cardiac cycle. Therefore, it is thought that the three limbs (right arm, left arm, and left leg) which enclose the heart into a circuit, where each branch directly implies current circulation through the heart, can be averaged together to form a stationary reference (central terminal) for precordials/chest-leads. Our hypothesis is that cardinal limbs do not form a triangle for the majority of the duration of the cardiac cycle. As a corollary, the central point may not lie in the plane identified by the limb leads. Using a simple and efficient algorithm, we demonstrate that the portion of the cardiac cycle where the three limb leads form a triangle is, on average less, than 50%.

4.
Eur Cardiol ; 18: e59, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023337

RESUMEN

Aims: The interpretation of intracardiac electrograms recorded from conventional electrophysiology recording systems is frequently impacted by powerline (50/60 Hz) noise and distortion due to notch filtering. This study compares unipolar electrograms recorded simultaneously from a conventional electrophysiology recording system and one of two 3D mapping systems (control system) with those from a novel system (ECGenius, CathVision ApS) designed to reduce noise without the need for conventional filtering. Methods: Unipolar electrograms were recorded simultaneously from nine consecutive patients undergoing catheter ablation for AF (five patients), atrioventricular nodal re-entrant tachycardia (three patients), or ventricular tachycardia (one patient) over the course of 1 week in 2020. Results: The noise spectral power of the novel system (49-51 Hz) was 6.1 ± 6.2 times lower than that of the control system. Saturation artefact following pacing (duration 97 ± 85 ms) occurred in eight control recordings and no novel system recordings (p<0.001). High frequency, low amplitude signals and fractionated electrograms apparent on unfiltered novel system unipolar recordings were not present on control recordings. Control system notch filtering obscured His bundle electrograms observable without such filtering using the novel system and induced electrogram distortion that was not present on novel system recordings. Signal saturation occurred in five of seven control system recordings but none of the novel system recordings. Conclusion: In this study, novel system recordings exhibited less noise and fewer signal artefacts than the conventional control system and did not require notch filtering that distorted electrograms on control recordings. The novel recording system provided superior electrogram data not apparent with conventional systems.

5.
BMC Res Notes ; 11(1): 915, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30572929

RESUMEN

OBJECTIVE: The Wilson Central Terminal (WCT) is an artificially constructed reference for surface electrocardiography, which is assumed to be near zero and steady during the cardiac cycle; namely it is the simple average of the three recorded limbs (right arm, left arm and left leg) composing the Einthoven triangle and considered to be electrically equidistant from the electrical center of the heart. This assumption has been challenged and disproved in 1954 with an experiment designed just to measure and minimize WCT. Minimization was attempted varying in real time the weight resistors connected to the limbs. Unfortunately, the experiment required a very cumbersome setup and showed that WCT amplitude could not be universally minimized, in other words, the weight resistors change for each person. Taking advantage of modern computation techniques as well as of a special ECG device that aside of the standard 12-lead Electrocardiogram (ECG) can measure WCT components, we propose a software minimization (genetic algorithm) method using data recorded from 72 volunteers. RESULT: We show that while the WCT presents average amplitude relative to lead II of 58.85% (standard deviation of 30.84%), our minimization method yields an amplitude as small as 7.45% of lead II (standard deviation of 9.04%).


Asunto(s)
Algoritmos , Electrocardiografía/métodos , Fenómenos Electrofisiológicos/fisiología , Procesamiento de Señales Asistido por Computador , Electrocardiografía/instrumentación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA